增量算法

定义
算法综述

    增量算法开始先计算几个generarorVoronoi图,然后在逐个增加generator,增量算法的主要部分就是l-1l12n)个generatorlgeneratorVoronoi图的转换。在增加generator的过程中,决定下个处理的generator也是个关键问题。这里引入一种quaternary tree的数据结构(Ohya,1983; Iri er al. 1984; Ohya et al. , 1984a; Maus,1984)。下面是算法描述。

Algorithm :Quaternary incremental method

Input: Set{ p4, p5,…,pn } of n-3 generators located in the unit square S={(x,y)| 0≤x,y≤1}.

Output: Voronoi diagram V for n generators{ p1,…,pn },where p1, p2 and p3 are the additional generators defined by system that won’t impact the final result.

Procedure:

Step1.   Find positive integer k such that 4k is closest to n, divide S into 4k square buckets, and construct the quaternary tree having the buckets as leaves.

Step2.   Renumber the generators by the quaternary reordering, and let the resultant order be p4, p5,…,pn.

Step3.   Construct the Voronoi diagram V3 for the three additional generators p1, p2 and p3 .

Step4.   For l=4,5,…,n do 4.1,..4.4.

4.1. By nearest neighbour search algorithm with the initial guess given by the quaternary initial guessing, find the generator pi (1≤i≤l-1) closest to pl.

4.2. find the points w1 and w2 of intersection of the perpendicular bisector of pi and pl with the boundary of V(Pi).

4.3. By the boundary growing procedure, construct the closed sequence of segments of perpendicular bisectors forming the boundary of the Voronoi polygon of Pl.

4.4. Delete from Vl-1 the substructure inside the closed sequence,and name the resultant diagram Vl.

Step5 Return V=Vn.

 

有关此站点的问题请向[lyq,ywj@keg.cs.tsinghua.edu.cn,

                   wpchen@cad.cs.tsinghua.edu.cn]发邮件。
上次更新时间: 2001年01月11日。