定义

应用背景
理论介绍
实现

  关于 Voronoi 图的定义也有很多,这里只介绍一种。

   Let us have points Pi, o<i<=n , in n-dimensional space P. The set of all points with property that every point inside the cell is closer to point Pi , than to any other point from P represents the Voronoi cell (Figure 1). The union of all Voronoi cells is known as Voronoi diagram.

                        

有关此站点的问题请向[lyq,ywj@keg.cs.tsinghua.edu.cn,

                   wpchen@cad.cs.tsinghua.edu.cn]发邮件。
上次更新时间: 2001年01月11日。