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1 Introduction

Finding the largest figure of some property contained in a given figure has

been a common and important problem in computational geometry in the past

30 years. Many efforts have been made on this field to achieve good results.

Researchers have looked at several instances of this problem such as Dobkin

et al generated an algorithm to find the largest triangle inscribed in a convex

polygon in [1], Boyce et al developed a method to compute the largest k-gon in

a convex polygon in [2]. Also Finding the largest convex polygon and the largest

axis-parallel rectangle in an arbitrary polygon was involved in [4] and [18], while

[5] telling how to find the largest square in a convex polygon. Recently this

problem has also attracted many researchers’ attention such as in [19] Kin Jin

improved the way to find the maximum area parallelogram in a convex polygon

with complexity O(n2) which is a more surprising result. In this report, we also

take one instance of the problem into our consideration: finding the maximum

area centrosymmetric polygon in a convex polygon.

Finding the maximum area centrosymmetric polygon (MACP) problem can

be defined: given a convex polygon in the plane, find the largest polygon in the

convex polygon that is centrally symmetric. Here centrally symmetric means

there exists a ”center” such that for every point on the polygon, when reflecting

it about the center we can produce another point which must be on the polygon).

This special problem was first introduced in [19] that an 2
π -approximation algo-

rithm given by finding the maximum area parallelogram. In this paper, we give

the way to find the largest centrally symmetric polygon in the convex polygon

more quickly and precisely.

MACP problem attract our attention because the resemblance is very im-

portant in research. We know that matching plays an important role in many

areas such computer vision and motion planning. Generally speaking, when we

are given two figures, try to determine how much the two figures resemble each

other, that is: we want to find a rigid motion of one figure that maximize the

resemblance with the other figure. Many ways have been used such as Hausdorff

distance in [6, 9, 10, 14, 15] or Frechet distance in [11] is designed to detect the

distance between the two figures’ boundaries and maximizing the area of the

overlap of them is also another appropriate way because we can minimize the

area of the symmetric difference by finding the largest overlap. Thus we choose

this topic to find how symmetric the given convex polygon is by finding the

largest centrosymmetric polygon in it which is meaningful.

The rest of this report is structured as follows: We start by introducing some

important notations and techniques in section 2. Then we propose the way how

to find the maximum area centrosymmetric polygon theoretically in section 3.

The correctness of the method is analyzed in Section 4 and Section 5 gives the

experimental result with the details in designing such practical search to find
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the largest centrally symmetric polygon. Finally we conclude this report with

some future improvements may be made.

2 Notation and Technique

The general way to find such centrosymmetric polygons can be finding the

”center” firstly. However, it’s hard to fix the appropriate ”center” since there

can be many such polygons when we don’t care about the area of them. Thus we

need some new techniques to tackle with. Considering the resemblance between

two figures, we can find their largest overlap to achieve and this may be a good

idea to use. Thus we consider whether we can use the same method when we care

about the resemblance. The answer is YES. So we keep our method as follows:

For the given convex polygon P , find the centrosymmetric convex polygon Q,

move Q on the plane to intersect with P . If we can find the maximum area of

the overlap of P and Q, we also get the largest centrally symmetric polygon in P

(This will be proved in section 4). In this section, we introduce some important

notations to stand our method of finding the maximum area centrosymmetric

polygon.

From the way above, suppose the original convex polygon P is fixed while the

centrally symmetric Q is free to translate and move. Thus define the reference

point of the convex polygon Q:

Definition 2.1. Let rQ be the reference point of Q when it’s the lexicographically

smallest point of all the vertices in Q.

After defining the reference point of the convex polygon Q, we can translate

Q to a given state by moving the reference point to some given responding point

and compute the area of the overlap. Thus we can have the following definition

of placement:

Definition 2.2. For a point r in the plane, let Q(r) denotes Q when rQ is

placed at the point r, we call Q(r) a placement of Q.

Similarly, we can let e(r) and v(r) denote the edge e and vertex v of Q when

its reference point is placed at r. Now we will see how to present the intersection

set of P and Q(r).

Definition 2.3. Let I(r) denote the intersection set of P and a placement Q(r)

consists of all pairs (f, g) where f is the interior, an edge or a vertex of P , g is

the interior, an edge or a vertex of Q(r) and f intersects g.

Since we have the description of the intersection set about two convex poly-

gons, call two placements Q(r1) and Q(r2) are combinatorially distinct if the
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intersection sets are different i.e I(r1) ̸= I(r2). Now look at the following fig-

ures: Figure 2 shows that the two placements are the same because they have

the same intersection set as we defined above. Thus we see the two points are

in the same region because their placements are combinatorially equivalent.

Figure 1: Example of Equivalent Placement

Figure 2 gives an example of combinatorially distinct placements.

Figure 2: Example of Distinct Placement

If we sum up all the possible placements of Q which are combinatorially

distinct from each other, they will be a 2-dimensional space which will be defined

as:

Definition 2.4. We call all the possible combinatorially distinct placements of

Q form the configuration space.

From the definition of configuration space, we can divide the plane into

some regions where two points are in the same region when their placements

are combinatorially equivalent. Thus, we can use configuration to bound the

number of distinct placements which will be meaningful.
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Configuration space has been researched by many scientists. It’s inspired

by motion planning how a robot can move with no collide with some given

polygon where the region of possible configuration space is called free space.

[7] gives the information about how to connect configuration space and motion

planning, while research into placements that the intersection set is not empty

is given in [8]. The connection about the placement and the overlap has been

also researched by many interested researchers.

What’s more, [16] shows that: The maximum number of combinatorially

distinct placements of two convex polygons with n and m vertices respectively

can be bounded by Θ(n2 + m2 + min(nm2,mn2)). Considering our problem,

if we translate the centrally symmetric polygon Q on the given P , we can also

have the bound of maximum combinatorially distinct placements number as

Θ(n3) and we can also construct a polygon that suits the lower bound which

means there is indeed some polygon P can have Ω(n3) distinct placements with

its centrally symmetric convex polygon. The special case is given in Figure 2

and it can be verified easily.

Figure 3: Example of a special convex polygon which has Ω(n3) distinct place-
ments with its centrally symmetric polygon

From now on, we will give some notations and methods about the way to

compute the maximum overlap.

Definition 2.5. Given a non-negative function f , we call f unimodal if there

exists an interval S = [a0, a1] and two points b0, b1 ∈ S, b0 ≤ b1 such that:

• For any point x not in S, which means x < a0 or x > a1, f(x) = 0;

• For any two points a0 ≤ x1 < x2 < b0, we have f(x1) < f(x2);

• For any two points b0 ≤ x1 < x2 ≤ b1, we have f(x1) = f(x2);

• For any two points b1 < x1 < x2, we have f(x1) > f(x2).
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The definition of unimodal is just opposite to multimodal because there can

be only one place where local area maximizing means global area maximizing.

The function in Figure 2 is unimodal.

Figure 4: Example of an unimodal function

The importance of unimodal definition relies on efficient search algorithms

can be generated for a unimodal function such as binary search or Fibonacci

search. Thus we need to find the connection with the area overlapped. Now

define the overlap area function A(r) as:

Definition 2.6. The overlap area function A(r) : R2 → R is: A(r) = S(P
∩

Q(r))

where S(A) is the area of polygon A computed.

Now we convert our problem into finding the best placement of Q(r) which

maximize A(r). Since we only give the definition of unimodal in 2-dimensional

case, it’s not good to tackle with the area function because it concerns with

both r.x, r.y which will be 3-dimension. So we try to restrict the problem by

define the polygon can only translate along some given direction. Technically,

we restrict the yi value and assume Q can only move along the line y = yi. Now

for the given yi value, we can also define the restricted overlap area function

Ayi(r) as:

Definition 2.7. The restricted overlap area function Ayi(r) : R → R is:

Ayi(r) = S(P
∩
Q(r)) where S(A) is the area of polygon A computed and

r.y = yi.

In the next section, we will give the reason why restricted overlap area

function is introduced to find the maximum area centrosymmetric polygon.

3 Finding the MACP in a Convex Polygon

In this section, we propose an algorithm finding the maximum area centrosym-

metric polygon in a given convex polygon P theoretically.
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Algorithm 1 Finding the MACP in a Convex Polygon

1: Get the data structure of the give convex polygon P ;
2: Random choose one node in P and assume it to be the center ;
3: Compute the convex polygon Q which is centrally symmetric about the

center ;
4: Find the reference point rQ of polygon Q;
5: Compute the List Reference-Y (RefY ) with P and Q;
6: Binary search the List RefY maximizing Ay∈RefY(r) to find the strip

(−∞,+∞)× [y : y′] contains the best placement;
7: Construct a 1/4-cutting and find the triangle contains the best placement

recursively

Now we describe the algorithm in details. After we get the convex polygon

P , it’s easy to get the centrally symmetric polygon Q by randomly choosing a

center. After the construction, we compute the Reference-Y List which consists

of yi-values that yi is the rQ’s y-coordinate such that some vertex vp ∈ P and

vq ∈ Q((x, yi)) have the same y-coordinate. Clearly there can be at most n2

different elements in the list RefY and suppose they are sorted as y1, y2, · · · , cn2

where yi < yi+1. Take binary research on the list RefY as follows: Initially

suppose kmin = 1 and kmax = n2, let k = ⌊(kmin + kmax)/2⌋. Then compute

maxr=(x,yk) Ayk
(r) using the method in [17] (we will give a sketch in the next

section) and maxr=(x,yk+1) Ayk+1
(r), do the operations above recursively if:

• maxr=(x,yk) Ayk
(r) < maxr=(x,yk+1) Ayk+1

(r), set kmin = k;

• maxr=(x,yk) Ayk
(r) > maxr=(x,yk+1) Ayk+1

(r), set kmax = k + 1;

• maxr=(x,yk) Ayk
(r) = maxr=(x,yk+1) Ayk+1

(r), set kmin = k and kmax =

k+ 1, the strip (−∞,+∞)× [y : y′] is found where y = yk and y′ = yk+1.

After finding the stripe containing the best placement, we generate a 1/4-

cutting and find the candidate triangle recursively which is used in [16].

This algorithm is almost based on [16] such as the binary search and cutting,

although its complexity can be analyzed O(n log n) theoretically, we don’t take it

into the experimental stage because the subroutine in computing the maximal

area along a line y = yi in [17] is hard to implement which will use high-

dimension expanding that is time consuming and another important reason

is such binary search above is not always efficient compared with some other

methods. In the experimental stage, we use a normal way to compute the

maximum area that Q can intersect P which will be declared later. Since the

algorithm above involves the idea of using unimodal property to design efficient

algorithm which leads our implemented algorithm. We will continue the analysis

about the correctness and complexity in the next section.
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4 Correctness and Complexity

The algorithm is given in Section 4 to find the largest polygon that is centrally

symmetric in a convex polygon. In this section we will prove the correctness of

the algorithm and give the complexity theoretically which should be a necessary

part among algorithm design process.

4.1 Correctness of the Algorithm

In order to keep the algorithm correct, there are two things to be satisfied:

• The polygon found by the algorithm is centrally symmetric at some point;

• The polygon found is the largest one that is centrosymmetric, which means

there exists no other centrosymmetric polygon with larger area.

Before the proof of the two aspects listed above, we should give a claim

that the largest centrally symmetric polygon is a convex polygon because the

algorithm computes the overlap of two convex polygons and it’s clearly that the

overlap of two convex polygons should be also a convex polygon.

Claim 4.1. The centrosymmetric polygon with the maximum area in a given

convex polygon is a convex polygon.

Now we give the reason. By contradiction, suppose the given convex polygon

is P and suppose the largest centrally symmetric polygon is Q, thus: there exists

two points x, y ∈ Q and λ ∈ (0, 1) such that λx+ (1− λ) is not in Q. Look at

the figure below:

Figure 5: Example of Q is not convex polygon
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In Figure 4.1, suppose the polygon found is Q which is centrally symmetric

with the maximum area and the center c is not convex polygon. There are

two points x and y in Q, but there is another point u = λx + (1 − λ)y where

λ ∈ (0, 1) suits u ∈ P but u is not in Q. Because the center of Q is c, we can

compute the corresponded point x′, y′ and u′ easily. It’s also easy to see that

u′ = λx′ + (1 − λ)y′. From the definition of convex polygon, u′ must belongs

to P for the sake of P contains the two points x′ and y′. Thus we know u and

u′ are both in P and they are symmetric at center c. In the same way, we can

know the segment from x to y are the segment from x′ to y′ are in P and they

are symmetric at center c. Thus we can find a larger polygon compared with

Q, which leads to a contradiction. So we know the polygon we want to find is

a convex polygon.

Now we return to the proof about the two points ensuring the correctness

of the algorithm.

Lemma 4.1. The polygon found in Algorithm 1 is centrosymmetric.

From the algorithm we will compute the centrally symmetric polygon of P

and we keep it as Q. The largest overlap of P and Q is kept as R. Now we need

to prove R is centrosymmetric.

Because R is a convex polygon from Claim 4.1, if all the vertices or all the

edges of R can be proved to be centrally symmetric, it’s easy to know R is

centrosymmetric. For any placement Q(r), clearly there exist a center point

c(r) that P and Q(r) are centrally symmetric at c(r). Now consider the overlap

of the two polygons. For any vertex v of R, there are three cases: v is a

vertex of P , v is a vertex of Q(r) and v is the intersection point of two edges

e1 ∈ P and e2 ∈ Q(r). If v satisfies the first two cases, it’s easy to see that

corresponding vertex v′ that is centrally symmetric at c(r) is also in R since it

belongs to the overlap of P and Q(r). If v is the intersection point of two edges

as above, we can first find the centrally symmetric edges e′1 ∈ Q and e′2 ∈ P ,

since e1
∩

e2 = v ∈ R, the intersection point v′ of e′1 and e′2 is also in R. Thus

we know for every vertex of R, we can find another vertex on R such that they

are centrally symmetric at point c(r). So we know the convex polygon we found

is centrally symmetric.

Lemma 4.2. The polygon found in Algorithm is the largest maximum area

centrosymmetric polygon.

In order to prove the polygon we found is the largest one, there are two

points meaningful:

• Algorithm 1 can find the largest overlap of two convex polygons when one

is free to translate in the plane.
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• For any centrosymmetric polygon R in P , we can construct another poly-

gon Q which is centrally symmetric with P and R ⊂ P
∩
Q.

Clearly if the two side above are both satisfied, the largest centrosymmetric

polygon in a convex polygon can be found by Algorithm 1. Now we proof the

two side. Firstly, give a constructive proof about the second one.

Lemma 4.3. For any centrosymmetric polygon R in P , there exist a centrally

symmetric polygon Q with P such that R ⊂ P
∩
Q.

For any given centrosymmetric polygon R in P , suppose the center is c, con-

struct the symmetric polygon Q by computing the centrally symmetric vertices

of P , then connect them to be Q. Look at the figure below:

Figure 6: Construct Q on the given P and R

The way to construct the polygon Q is given above and we need to prove

R ⊂ P
∩

Q. For any point v ∈ R, it’s easy to see v ∈ R ⊂ P , keep the symmetric

point about c is v′, we can have: v′ ∈ Q. Since R is centrosymmetric at center

c, v′ ∈ R ⊂ P , which means v′ ∈ P
∩
Q. Then we can conclude v ∈ P

∩
Q. So

R ⊂ P
∩

Q.

Now we focus on the point that Algorithm can find the largest overlap of

convex polygon P and Q. First we will introduce some important properties.

Property 4.1. Let P and Q be the two polygons in Algorithm 1, for any fixed

yi ∈ R, the restricted overlap area function Ayi(r) is unimodal.

This property is very important because we can use it to compute the max-

imum overlap of P and Q when Q is confined to translate along some fixed line

y = yi, thus binary search will be useful to find the strip (−∞,+∞)× [yk, yk+1]

that contains the best placement Q(r) which resemble P mostly.
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This property is a corollary from [17] in which the sectional area of convex

polytopes is proved to be unimodal. Considering the 2-dimension case, we can

also generate the property that Ayi(r) is unimodal. More visually, image Q

move from the place that it’s entirely left to P to the place that it’s entirely

right to P . During the process, the maximum area for each vertical line behaves

like: First being zero for some time, then it increases strictly until there is such a

yk that it reaches the maximum area, it may also stay constant at the maximum

are for some time until it starts to decrease strictly, eventually it becomes zero

when it entirely passes the fixed polygon.

Property 4.2. Let P and Q be the two polygons in Algorithm 1, suppose rQ is

defined to translate along a line l, the restricted overlap area function Al(r) is

unimodal.

This property is a more general one compare with Property 4.1 because we

can let the line l be y = yi which makes sense. This property contains more

meaning: If we move the polygon Q along any line l in the plane, the overlap

area function is unimodal. This can be also verified from [17]. Now we will give

another important fact that using the binary research above, we can find such

a strip (−∞,+∞)× [yk, yk+1] contains the best placement.

Lemma 4.4. For any two lines l1 : y = yk and l2 : y = yk+1, let v1 and

v2 be the points on the two lines such that Syk
(v1) = maxr∈l1 S(P

∩
Q(r))

and Syk+1
(v2) = maxr∈l2 S(P

∩
Q(r)). Without loss of generality, suppose

Syk
(v1) ≥ Syk+1

(v2), then the open half-plane defined by l2 : y = yk+1 con-

taining point v1 contains the best placement.

Figure 7: Half space bound of the best placement

Look at Figure 4.1, we want to prove the open half-plane defined by l2 con-

taining v1 contains the best placement. By contradiction, for any point v3 such

that whenQ is placed to v3 the area is larger, i.e. S(P
∩
Q(v3)) > S(P

∩
Q(v1)).

Connect point v3 with v1 and it will intersect l2 at some point v4. From the Prop-

erty 4.2 the overlap area function along line lv1,v3 should be unimodal, because
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S(P
∩
Q(v3)) > S(P

∩
Q(v1)), we know S(P

∩
Q(v4)) > S(P

∩
Q(v1)) from

the definition of unimodal. Thus S(P
∩
Q(v4)) > S(P

∩
Q(v1)) ≥ S(P

∩
Q(v1)).

Since v2 and v4 are on the line l2 and v2 is the point that maximize the overlap

area when Q is translated along the line, which makes an contradiction. So we

can restrict the best placement to the half-plane containing v1.

Lemma 4.5. The binary search in Algorithm 1 can find the strip (−∞,+∞)×
[yk, yk+1] such that the best placement is in the strip.

Recall the binary research on the RefY list, each time compute the two

value yk and yk+1. Then we need to compute the maximum overlap area along

the line, if maxr=(x,yk) Ayk
(r) < maxr=(x,yk+1) Ayk+1

(r), we know the half plane

(−∞,+∞) × [yk, ymax] which means we can let kmin = k and continue the

binary search. The same analysis for the other two cases. Finally we can find

such strip contains the best placement.

Return to the proof of Lemma 4.2: From Lemma 4.5 Algorithm 1 can find

the stripe containing the best placement for any two convex polygon P and Q,

now perform a 1/4-cutting and find the triangles containing the best placement

recursively. Here a 1/4-cutting means divide the plane into some disjoint tri-

angles that cover the entire plane, each triangle will intersect the segments no

more than k/4 and the number of all segments is k. The method’s correctness

can be found in [16]. Generally speaking, the way to find the placement in the

fixed strip can be operated as another search process will may be efficient as

well. Thus the algorithm finds the largest overlap of P and Q.

Theorem 4.1. Algorithm 1 finds the maximum are centrosymmetric polygon.

From Lemma 4.3 and Lemma 4.2 we know that the method of finding the

maximum area centrosymmetric polygon is correct and Algorithm 1 can output

the largest polygon in P that is centrally symmetric. �

4.2 Complexity Analysis

In this section, we will give the complexity of Algorithm 1 in a theoretical way.

Before the analysis, we have the following lemmas.

Lemma 4.6. For each line l : y = yi, we can compute the maximum restricted

overlap area maxr∈l Ayi(r) in O(n) time where the convex polygon has n vertices.

In [17] we learn that for a convex polyhedron K with n vertices, the maxi-

mum area cross-section orthogonal to a given direction can be compute in O(n)

time using the algorithm in [12]. Thus we can add another coordinate to the

xy-plane which means extending the convex polygon P to a right cylinder in di-

rection (0, 0, 1). At the same time, extend the polygon Q to a slanted cylinder in

the direction (1, 0, 1) for the line y = yi. Thus we can compute the intersection
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of the two cylinders which can be seemed as the polyhedron K. Then compute

the section area that is using the xy-plane to intersect the polyhedron K to find

the maximum overlap. This can be computed in O(n) time from [12]. Though

we can achieve the complexity, the algorithm is too complex and not practical

because in involves dimension expanding. Thus we may use some other ways in

our experiment stage.

Lemma 4.7. The binary search that finds the strip (−∞,+∞) × [yk, yk+1]

containing the best placement takes time O(n log n).

Before the binary search, the ordinary idea is computing the Reference-Y list

directly where O(n2) time is necessary. However, all the vertices of P can be

sorted by y coordinate as {p1, p2, · · · , pn} in O(n log n) time and the same for Q

as {q1, q2, · · · , qn}. The RefY list is the matrix as M = (cij) where cij = ai−bj .

Frederickson et al found an algorithm in 1984 which can compute the k-th value

of the n2 elements in O(n) time when the matrix M is a sorted one (here M

is sorted means the elements in each column and each line are sorted), thus

we can use O(n) time to find the k-th value yk and use another O(n) time

to compute maxr∈l:y=yk
Ayk

(r) from Lemma 4.6, also O(n) time is needed to

compute maxr∈l:y=yk+1
Ayk+1

(r). Then continue the binary search process until

we find the strip contains the best placement. There are O(log(n2)) = O(log n)

search loops and each search can be finished in O(n) time, thus O(n log n) time

is enough to find such strip with the preprocess of sorting time which can be

also bounded by O(n log n).

Theorem 4.2. Algorithm 1 can find the maximum area centrosymmetric poly-

gon in O(n log n) time.

Now we give the complexity step by step. When n vertices convex polygon

P is given, we can choose any vertex as the ”center” and compute the centrally

symmetric polygon Q. This step can be done in O(n) time clearly. Then we

can compute the strip (−∞,+∞) × [yk, yk+1] in O(n log n) time from Lemma

4.7. The last step is 1/4-cutting and triangle search recursively which can be

also finished in O(n log n) time from [17] (this part is not so clear in the paper

and we choose some other ways in our implementation). Sum up all the time

complexity, we conclude the theorem. �

5 Experiment

In this section, we will introduce the details of our project that finds the maxi-

mum area centrosymmentric polygon in a convex polygon. This section contains

the following parts: First we will introduce the algorithm we implement which

is not exactly the same as Algorithm 1 in section 3, then give an overview about

14



the design of our experiment, the following part gives the details of the opera-

tions permitted and we will give some simulation results. Finally, we conclude

the experience our team gain from the project with some problems we come

across during the process and how we solve these problems.

5.1 Experimental Algorithm

Although Algorithm 1 in section 3 can efficient find the largest centrosymmetric

polygon in a convex polygon theoretically, there are many difficulties in imple-

mentation. The hardest two stage is:

• For the given line l : y = yk, suppose Q is free to translate along the line,

we can find the maximum overlap area maxv∈l S(P
∩
Q(v)) in O(n) time.

• When we find the strip (−∞,+∞)× [yk, yk+1] containing the best place-

ment, a 1/4-cutting is involved to search the triangle containing the best

placement recursively.

The first one is very hard to implement because the algorithm employed is

expanding the problem into high-dimension case that computes the intersection

of two convex polytopes and find the largest sectional area of the intersection

polytope corresponding to the largest overlap when one polygon is free to trans-

late along some fixed line. The way to find the intersection of two high dimension

convex polytopes is very hard, let alone computing the largest sectional area of

the polytope. So we give up the method to compute it. The second stage is also

very hard in practical implementation because the construction of 1/4-cutting

is difficult and the recursively search of all the triangles increase the hardness.

Under the circumstances, we return to the idea of finding the maximum area

centrosymmetric polygon which involves the unimodal definition, some easy im-

plementing way can be found which can also achieve the aim of the above two

parts. Now we give the experimental algorithm below:

Algorithm 2 Experiment Algorithm: Finding the MACP in a Convex Polygon

1: Construct the convex polygon P based on the points given;
2: Compute the centrally symmetric polygonQ to P at some fixed center point;
3: Find the reference point rQ of Q;
4: Compute all the y-coordinate values of rQ when P and Q intersect at some

vertex (RefY List);
5: Compute all the x-coordinate values of rQ when P and Q intersect at some

vertex (RefX List);
6: Binary search the List RefY maximizing Ay∈RefY(r) (using Algorithm 3

below) to find the strip (−∞,+∞)× [y, y′] contains the best placement;
7: Using optimum seeking method on [y, y′] to find the best placement;
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In the above algorithm, we may find some difference compared with Algo-

rithm 1. The first one the input of the algorithm is many points on the plane

instead of the given convex polygon P . This difference is legal because when

we design the project, we know that users may give an arbitrary polygon in

the plane and it may disturb the users how to input a convex polygon, so we

change the input such that the users can point many points on the plane, with

no worry whether they consist a convex polygon, then our program computes

the convex using the algorithm we learned in class. The second difference we

also compute the Reference-X List(RefX ) because in our experiment we will

compute the largest overlap when Q is restricted to translate along some line.

The third one is we bring in Algorithm 3 below to compute the maximum area

of P
∩
Q(r) when r is restricted to translate along the line y = yi, the algorithm

will be given later. The last difference is we don’t need 1/4-cutting as Algorithm

1 after we find the strip containing the best placement, in the other way, we

use the optimum seeking method instead of recursively searching the triangles

cover the plane. Algorithm 3 is like:

Algorithm 3 Finding Maximum area of P
∩

Q(r) when r is along line y = y′

1: Compute the rough lower xlower such that S(P
∩
Q(xlower, y

′)) > 0;
2: Compute the rough upper xupper such that S(P

∩
Q(xupper, y

′)) > 0;

3: Double goldenRatio =
√
5−1
2 ;

4: Dis = xupper − xlower;
5: x1 = xlower +Dis ∗ goldenRatio, x2 = xlower + ∗(1− goldenRatio);
6: while Not finding the maximum area do
7: Compute the area S1 = S(P

∩
Q(x1, y

′)) and S2 = S(P
∩

Q(x2, y
′));

8: if S1 < S2 then
9: xupper = x1; x1 = x2; x2 = xlower+(xupper−xlower)∗(1−goldenRatio);

10: end if
11: if S1 > S2 then
12: xlower = x2; x2 = x1; x1 = xlower + (xupper − xlower) ∗ goldenRatio;
13: end if
14: if S1 = S2 then
15: xlower = x2, xupper = x1, Dis = xupper − xlower;
16: x1 = xlower+Dis∗goldenRatio, x2 = xlower+Dis∗ (1−goldenRatio);
17: end if
18: end while

Algorithm 3 uses the optimum seeking method to find the largest area when

the rough lower value and upper value is found. The two values can be found by

some easy search way since we only want to get the xi value such that the area

corresponded is larger than 0. Algorithm 3 can correctly finds the maximum

area because the function Ay′(r) is unimodal and we can find the largest area

efficiently by optimum seeking method. Since the optimum method is a very
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classic searching method for unimodal function, we leave out some details in

Algorithm 3.

This is an important part to bring in the new algorithm which is easy to

implement and more practical to find the largest area of two convex polygons

when Q is restricted to translate along some line. This algorithm may be worse

than the algorithm in [17] from the theoretical complexity way, however, this

one is easy to implement and we take fully use of the unimodal property in

the research and the optimum seeking method also performs well for its high

efficiency. So we can continue to find the strip (−∞,+∞) × [y, y′] containing

the best placement. Then we use the same way for the section [y, y′] to seek the

best placement based on the unimodal property, which is also very efficient in

practical project.

From the analysis above, the correctness can be hold using the experimental

algorithm and the efficiency may be not so good as O(n log n) time, however

the optimum seeking method can also be efficient in practical. So we claim this

project can be continued based on the method.

5.2 Experimental Design

In order to put the project on the web for more users, we choose Java to write

the project as an applet and the appearance is designed as below:

Figure 8: The appearance of project design

On the left side of the design, it’s a 900×600 panel where users can input the

nodes, the algorithm can compute the convex polygon from the input, finding

the maximum area centrosymmetric polygon and some other operations that
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will be introduced in the following part. The right side of the design a 200×600

toolbar which is made up of two parts. The upper part is the output and

display region where we can see the area of two overlap polygons visually with

both result output and the diagram. Moreover, the diagram will be useful

in verifying the unimodal property when one polygon is move along some fixed

line with the restricted overlap area curve. The lower part is the function region

which consists of many buttons and a text field for input information.

The design above is simple and clear with on more useless region. The size

of the appearance is appropriate for putting on a web site and the user needn’t

page down to check for the button or to find the output result. Now we will tell

more about the details in our experimental design. Since the project contains

both appearance and algorithm implementation, the interfaces between them

should be very important. Listed below are the interfaces:

• public static LinkedList <Node> getConvexHull(LinkedList <Node> nodes):

This interface gives the result from the input nodes which is kept in a

linked list, the return value is the linked list representation of the convex

polygon found;

• public static LinkedList <Node> getCentroSymmetry(LinkedList <Node>

convexHull): This interface aims at computing the centrally symmetric

polygon of the given convex polygon, the input is a convex polygon rep-

resented by a linked list of nodes and the output is also a linked list of

nodes;

• public static void getRefenceVal(LinkedList <Node> P, LinkedList <Node>

Q, ArrayList <Integer> refX, ArrayList <Integer> refY): This interface

compute the reference-X and reference-Y list that are useful in the imple-

mented algorithm. The input are the two convex polygons and the two

lists for keeping the reference values. It has no return value with changing

the refX and refY lists inside the implementation;

• public static double computeIntersect(LinkedList <Node> P, LinkedList

<Node> Q, Integer xbias, Integer ybias): This interface is important be-

cause it will return the overlap area for the two convex polygons when Q is

allowed to move (xbias, ybias) increment, where means the reference point

rQ is moved to (rQ.x+ xbias, rQ.y + ybias). Easy to see the input of the

interface is a given fixed convex polygon P and a free to translate polygon

Q with the increment (xbias, ybias), the return value is the overlap area;

• public static RtnVal computeMaxIntersect (LinkedList <Node> P, Linked-

List <Node> Q): This interface returns the information of the maxi-

mum overlap area. The class RtnV al includes (xbias, ybias, area) where
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(xbias, ybias) is the increment of move and area is the computed maxi-

mum overlap area. The input of the interface is two convex polygons and

the latter one is assumed to move freely in the plane, the return class

contains the information the increment to move and the largest are;

• public static RtnVal computeMaxIntersectForY(LinkedList <Node> P, Lin-

kedList <Node> Q, int ybias): This interface is almost like the above one

with the difference that it computes the largest area when Q is restricted

to move along a fixed line. The input of the interface is two convex poly-

gons and a increment of y-coordinate which means rQ is allowed to move

along the line y = rQ.y+ybias. The return value is the information where

we can find the largest overlap for the restricted movement and the largest

value of the overlap.

Based on the six interfaces above, we can design the project in a more

structural way. In the next section, we will give all the operations supported in

our program.

5.3 Experimental Operations

This part contains the operations and functions related in our design. Let’s take

a closer look at them:

Input: There are three ways for input: randomly generating some points,

clicking on the black panel and import some points by input the position. Fol-

lowing graph is an example of generating 30 nodes randomly:

Figure 9: Generate 30 nodes randomly
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After randomly generating, we can also click on the black panel to add more

points. The output region will give the information about the number of points

in the panel, duplicated points will be counted only once with prompt message.

When you find the input has no meaning or you want to start a new test, the

button in blue cycle ”clear” will help you clean all the nodes in the panel.

Algorithm Start: Click the ”start” button will compute the largest over-

lap area quickly and the output region will give the maximum value with a

histogram. This one is useful because we also supported another operation:

Drag: Users can drag the polygon Q consisted of yellow lines to intersect the

fixed convex polygon to see the overlap area, the output region will give the

current area compared with the maximum area at the same time. Following is

the example:

Figure 10: Example of finding the maximum area with Drag operation

Step by Step: This operation gives how we begin our algorithm, the dif-

ference is we don’t give all the steps in our implemented algorithm, instead we

do the following things: Compute the Convex polygon P first; Find out the

centrally symmetric Q; Draw all the refY lines in the panel; Scan all the lines

when Q is entirely above P until it’s entirely below P , when scanning each line,

we draw the curve of overlap area function when Q is move along the line from

left to right in the diagram region. We can also pause at every time to see the

correctness of unimodal property. Following is an example:
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Figure 11: Step by step operation

5.4 Experimental Data and Result

In order to make a project robust and meaningful, test on different types of

data is very important. In this part, we will talk about the way we deal with

all the cases.

• Normal data: Our program runs efficiently on the normal data based on

the input from users;

• Small number of nodes: When the number of nodes is small (0, 1, 2), we

will give the message to input more nodes;

• Duplicated click: When a point is click many times, we won’t add the

number of points, while a message telling the user it’s a duplicated click.

• Points on a line. Generally speaking, there is no polygon when all points

are on a line, in order to make the algorithm robust, we also run the case

with output 0 which is meaningless. The user can click more points to

restart the algorithm and find the result.

• Large number of input nodes. We have also test these cases when many

nodes are just around a circle such as 100 points, the algorithm can also

give the correct answer quickly.
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5.5 Experimental Experience

During the process of the project, we achieve many experiences and overcome

some problems we came across in the implementation. Through the way in

solving these problems, we gained so much not only the way of solving problems,

but also the importance of teamwork. Firstly, we will list some significant

problems in our implementation:

The first vital one is how to compute the maximum overlap area when the

polygon Q is restricted to move along a given line y = yi. As we describe

in section 3, [17] proposed an algorithm which involved dimension expanding

and it’s not practical to implement. Under the special circumstance, we have

to think of another algorithm for implementation. In the beginning, we came

up with binary search which is used on refY list and this one seems correct

in our first edition. However, we test some special data: only three points in

the panel and their x-coordinate are almost the same, the result we generated

is 0! This urgency makes us crazy but we found the reason very soon. The

binary search about the refY list is not the ordinary one, if the x region suits

S(P
∩
Q(x, y)) > 0 is very narrow, the search will terminate and output the

area 0. Thus we came across a new algorithm which involves optimum seeking

method after finding the rough bound the area is larger than 0 (the details

are omitted here). This problem makes sense why special data test should be

considered when designing a project. Another important problem is how to read

file for input? This problem seems easy because we can use many io operations.

However, this project is designed as an applet which will be put on the web

and Java is very cautious about operating local files for security reasons. This

problem can be also solved by some special techniques by enquiring the security

certificate. During the process to solve problems, we gained many experiences

not only in coding, but also how to think of the project and how to make the

project strong and robust.

Besides the problems we came across and solved, there are some other im-

portant points we learned from the project. The first one is theory is not always

reality. Many algorithms may perform well in theoretical ways but they are

very difficult to implement and may be not so practical. However, the trade-

off between theoretical and practical should be concerned cautiously. What’s

more, teamwork is also very significant in the experiment. Before the project,

our team has discussed several times about the topic we chose and we made

clear division. During the process, we gained the precious friendship as well as

the good result of the project. In a word, we think highly of this project and

cherish all the experiences from the experiment.
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6 Conclusion and Discussion

In this report, we choose the topic: finding the maximum area centrosymmetric

polygon (MACP) in a convex polygon as our project research. This problem is

one instance of the important problem of computational geometric area: how to

find the largest figure with some property contained in a given figure, which has

been attracting the scientists’ attention since its first appearance. In this report,

we propose the method: construct a centrally symmetric convex polygon first,

and compute the largest overlap where the latter polygon can move around the

plane to solve the problem. We give the algorithms along the method in finding

the largest centrally symmetric polygon from both theoretical and practical

ways. The theoretical algorithm can find such polygon in O(n log n) time and

the correctness is also proved. However, it’s not practical in implementation.

So we come up with another experimental algorithm which is easier and more

understandable in the experiment. Luckily, the algorithm implemented can also

find the largest centrally symmetric polygon and the efficiency is also acceptable.

In the experimental stage, we give a good design: for any input by randomly

generated or points from users, we can find the largest centrally symmetric

polygon quickly and we can make users more clear about why the algorithm can

do such a search by showing the unimodal function curve recursively. What’s

more, users can drag the centrally symmetric convex polygon of the given one

to see the area of their overlap. This problem is solved in such a program

successfully with good appearance design and user experience.

During the research process, we find several problems we can continue keep

attention and further research. In our experimental stage, we use the optimum

seeking method both on the two dimension finally, thus if it’s possible to search

on the xy plane of the two coordinates at the same time? From the unimodality

of the special function, can we give another similar property on the three coordi-

nates: x, y and the area S(x, y)? Intuitively speaking, the overlap area function

S(x, y) will be also unimodal (here we should redefine unimodal in another way

such that it’s suitable for the function with two variables) which may produce

some other quicker search method such as Newton downhill method or Newton

uphill method. Another related problem may draw our attention: if the given

polygon is not restricted to convex, can we also find the largest centrally sym-

metric polygon in the similar way? This problem seems not so easy to give a

determined answer. These problems discussed above are very important in both

theoretical and practical ways and they play an significant role in understanding

the essence of these problems in computational geometric.
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