
Adaptive Sampling of Images Based on

Delaunay Triangulation Report

Li Pengxu, Wang Lvdi, Hou Qiming

1. Background: described in proposal

2. User’s guide in a nutshell:

Compression:

a) Enter an image file name

b) Click “Load Image”

c) Click “Initialize”

d) Click “Double sampling” until satisfied with the quality

e) Click “Save .voro”

View results:

a) Enter an image file name (without .voro extension)

b) Click “Load .voro”

3. Sampling algorithm in pseudo code

PriorityQueue sample_queue;

DelaunayTriangulation triangulator;

Image image;

Integer w0; //w0 is taken to be 2000 in our implementation

//initial triangulation is 2 triangles forming the

image’s bounding box

triangulator.initialize();

For i=0 to nSample do

Triangle t;

do

t=sample_queue.extractMin();

If t==null Then Exit;

While not t.isInside(t.center())

For j=0 to nSamplePerTriangle do

 triangulator.addVertex(t, t.center());

End

Procedure triangulator.onTriangleAdded(Triangle t)

 sample_queue.add(t,weight(t));

End

Procedure triangulator.onTriangleRemoved(Triangle t)

 sample_queue.remove(t);

End

Function weight(Triangle t)

v=variance(

image.color(t.v0),

image.color(t.v1),

image.color(t.v2));

Return (v+w0)*t.area()

End

Degenerate case: New sample point lies on triangle edge/outside triangle

To make the color value on sample points well-defined, we round all sample

point coordinates to integers. Thus, the rounded center of a triangle does not

necessarily lie strictly inside it. Given a triangle to sample, we first try all 4

rounding conventions, i.e. round up/down for x/y. When all of them fail to

produce a point lies strictly inside the triangle, we just discard it, and try the next

best one. This degeneracy handling scheme makes the algorithm not guaranteed

to sample all pixels before terminate. But as a compression scheme, sampling all

pixels hardly make any sense, and our algorithm usually provides a satisfying

result before it terminates.

In the Jan 5 version of our program, the on triangle edge case is not handled,

resulting in incorrect behavior at large number of sample points.

Our implementation of Delaunay Triangulation in detail:

The specialty of our problem:

a) All points are integer points, and lies inside a predefined rectangle (the image).

It’s reasonable to assume the image’s resolution is less than 32768x32768.

b) Points are added into the triangulation one by one, and we know which

triangle it’s added into before incremental triangulation.

So we omitted the point location maintenance part in the standard algorithm, and

use exact toLeft and inCircle tests. Since coordinates fit in a 16-bit signed integer,

toLeft may be exactly done in 32-bit signed integer (java int) and inCicle in

64-bit (java long).

Complexity analysis

In this section, n denotes number of sample points.

Our algorithm’s complexity comes from:

a) Delaunay Triangulation

The triangulation is incremental triangulation without point location. The number

of elementary operations down is proportional to number of edge changes during

triangulation. Its complexity is input sensitive, since the points are inserted in a

deterministic order with respect to the input image. In worst case, it’s O(n^2),

while practical input tends to yield random-like point patterns, result in O(n)

behavior.

b) Sampling

Our adaptive sampling scheme involves maintaining a priority queue that

contains all triangles in the current triangulation. Thus, for each edge change

reported by the triangulator, O(1) insertion/deletions require to be done in the

queue. Also, each time a new sample point is requested, an extractMin operation

has to be performed. Number of total edge change, as analyzed above, is worst

case O(n^2) and practical case O(n). We use a traditional binary heap for the

priority queue, which has O(logn) insertion/deletion/extractMin. We get worst

case O(n^2logn) and practical case O(nlogn) for this step.

Thus, total complexity is worst case O(n^2logn) and practical case O(nlogn).

Failed improvement schemes:

a) Multiple samples per triangle

At the point of inserting the first triangle, triangulation is changed. The remaining

points would need point-location, or be maintained during incremental

triangulation. Though manageable, this is not a trivial task. Also, after the

triangulation change, those predetermined points may very likely become poor

sample points.

Multiple initial samples on feature points would be very helpful, but we don’t

have time to implement it.

b) Random sampling

Random sampling has a tendency of forming irregular triangles (triangles with

larger maximal angle). Despite the fact delaunay triangulation tries to minimize

them, there’re still a considerable number of them manage to stay. Such triangles

make this kind of sampling much less efficient.

Due to lack of time, we don’t have time to try many different distributions. It’s

possible some better distributed random sampling may outperform center

sampling.

c) Weighting schemes that use internal information of triangles

The strength of this sampling method is that only color information on previous

sample points are used to determine the next sample point’s location. Thus, only a

sequence of colors and a few initial sample points are required to reconstruct the

original image. All sample point locations may be determined by an identical

sampler with the color sequence as input. More powerful weighting schemes that

use internal information, however, violate this rule, and require to have additional

information to be stored to make decompression possible. That effectively halves

the compression ratio. Though they do provide better quality with fewer number

of sample points, they aren’t likely to do as well at same amount of storage,

which usually means half of less sample points.

4. An abstract documentation of the code:

Almost each file contains a considerable amount of dead code. They’re mostly test

code or zombie code of failed improvement attempt. For extensibility, we left them in

the program. They may just be safely ignored while reading.

File Description

Vertex.java Data structure and basic methods for vertices

Triangle.java Data structure (a special case of DCEL) of triangles and

manipulation methods

DelaunayTriang- The incremental Delaunay triangulator.

ulation.java

Sample.java The sampling controller. It calls the triangulator, and supplies

the triangulator with call backs to maintain the sampling priority

queue.

DemoApplet.java The user interface and I/O part.

image files Test suites

5. Detailed user’s guide

The batch files:

File Description

t.bat Compile and run the applet

r.bat Run the applet

c.bat Compile and run the saved .c file

The user interface:

Button Description

Load Image Load the image file, file name should be entered in the text box

Initialize Initialize the sampling

Double sample Double the amount of sample points

Sample once Add one sample point

Save .voro Save sampled image to <image file>.voro

Save .c Save sampled result to a .c file that may be compiled and run

using c.bat. It views the sampling result with smooth shading.

Requires OpenGL and recommends to compile with gcc.

Load .voro Load and view previous saved sample result

6. Results

cgvs.png, at 128 samples

cgvs.png, at 1024 samples

cgvs.png, 32768 samples:

girl0.png, 8192 samples

girl1.png, 32768 samples

7. Comparisons

All test suites are 24-bit png images. Note that jpg images are already compressed,

during which considerable high frequency noise are introduced even at maximal

quality. That makes them poor test suites for our algorithm.

Test suite Resolution Original png .voro + rar

cgvs.png

32768 samples

400x600 139782 Bytes 60185 Bytes

girl0.png

8192 samples

488x475 228811 Bytes 16431 Bytes

girl1.png

32768 samples

439x576 305844 Bytes 65209 Bytes

8. Our collaboration

Li Pengxu: The delaunay triangulator

Wang Lvdi: GUI and overall architecture, proposal

Hou Qiming: Sampling, report

