
3D MORPHISM & IMPLICIT SURFACES

ROMAIN BALP AND CHARLEY PAULUS

Abstract. The purpose of this paper is to present a framework
based on implicit surfaces that allows to visualize dynamic shapes,
and see how implicit surfaces can be used to perform shape trans-
formation, also called morphism, between shapes of different ge-
ometry and even different topology.

1. Introduction

In Computer Vision and Computer Graphics, 3D objects are often
modeled as explicit surfaces such as triangulated meshes or paramet-
ric surfaces. Such representation are easy to manipulate and intuitive.
However, these representations are not necessarily efficient for fitting
surfaces or even for shape transformation and automated modeling
where the shape can encounter extreme geometrical and topological
changes.
Implicit surfaces are well-suited for simulating physically based defor-
mations and for modeling smooth objects as well as for reconstructing
surfaces from noisy data sets. They have not gained wide acceptance,
in particular because they are quite difficult to render in comparison
with explicit surface representations.
This work is divided in two main parts: we will desribe the implicit
surface visualisation framework, and the implicit surface schemes used
to perform shape transformation.

1.1. Implicit Surface. Basically, a general implicit surface Sf is de-
fined as the zero-set of a scalar defining function f : R3 7→ R with

f(x) = 0 (1.1)

The implicit surface is defined as Sf = {x ∈ R3|f(x) = 0} also called
isosurface at the value 0. Based on a common convention, we define
the interior of the surface Sf , as the domain where f is positive, i.e
f(x) > 0. Accordingly, the exterior of the surface is the domain where
f is negative, i.e f(x) < 0.

Representing objects with a defining function has a number of ad-
vantages, in particular implicit surfaces

Date: January 1, 2007.
Romain Balp student number 2005280032.
Charley Paulus student number 2006280039.

1

2 ROMAIN BALP AND CHARLEY PAULUS

• have a mesh-independent representation, but the mesh can be
generated when needed,

• are guarenteed to be manifold surfaces with no intersections,
• are topologically flexible

These properties are very intersting for morphing when the shapes have
different topology or geometry.
There is a lot of representation for implicit surfaces: radial basis func-
tion, Moving Least Square... In this paper we have used analytical
definition for very simple shapes, and variational representation using
radial basis functions.

1.2. Iso-Surface tracking. One of the main issues of Implicit Sur-
faces is how to visualise them. Many approaches have been proposed
such as marching cubes, QSplat bounding sphere algorithm, or particle
sampling. The method we use here is based on the particle sampling
scheme of Witkin and Heckbert [?] and the reconstruction algorithm
of Chaine [3] based on Delaunay triangulation.
We suppose we already have an implicit surfaces Sf defined by an im-
plicit functions f (this will be discussed later in section 4).We proceed
as follow:

• sample the surface Sf using particle sampling,
• compute the Delaunay triangulation of the particles,
• reconstruct a mesh approximating Sf with Chaine’s reconstruc-

tion algorithm.

2. Particle Sampling

In 1994, Witkin and Heckbert proposed a method to control and vi-
sualize shapes represented by parametrized implicit functions [1]. Their
idea was to attach some particles to the surface and then make them
spread out to reach uniform density using a local repulsion scheme
based on an energy minimization.
To attach moving particles to the surface, we derive a basic constraint
on particle and surface velocities that establishes, then maintains con-
tact as the system evolves over time.

f ′(x, t) = fx(x, t) · ẋ (2.1)

In practice, we might not have valid initial conditions, and numerical
integration errors would cause drift over time. We cure these problems
using a feedback term

f ′(x, t) = fx(x, t) + Φf(x, t) (2.2)

We then solve for particle velocities

ẋ = x− fx(x, t) · x + Φ · f(x, t)

fx(x, t) · x · fx(x, t) · x
f(x, t) (2.3)

3D MORPHISM & IMPLICIT SURFACES 3

This ensures the particles are attached to the surface during its evolu-
tion. Now we want to be able to control their positions over the surface,
i.e. have a good sampling.
Witkin and Heckbert made particles to spread out to uniform den-
sity by local repulsion, relying on the finiteness of the surface to limit
growth, by using a simple repulsion scheme. The energy of particle i
due to particle j is defined as

Eij = αe
−

‖rij‖
2

σ2
i (2.4)

where α and σi are tuning parameters. For a set of n particles, the
energy of the particle i is therefore

Ei =
n∑

i=1

Eij (2.5)

Ultimately, we would like to reach the global minimum of each Ei by
varying the particle positions on the surface. Finding the global min-
imum is impractical, but we can find a local minimum by gradient
descent : each particle moves in the direction that reduces its energy
fastest. We therefore choose each particles desired velocity to be nega-
tively proportional to the gradient of energy with respect to its position

ẋi = −σ2
i E

i
xi

=
n∑

j=1

rijEij (2.6)

This simple repulsion ensures to have an uniform distribution of the
particles on the surface, but it can be very slow to compute. If the
energy is well designed, only the closest neighbors of a point xi will
contribute to its repulsion factor. To determine the closest neighbors,
we use the Delaunay triangulation TD: we assume that the closest
neighbors of xi, geometricaly speaking, are also neighbors of xi in the
triangulation. This way we only process the neighbors in the triangula-
tion. Still we may have some strange results, as all the neighbors in the
triangulation are not geometricaly close (we can think of the awkward
example of a sphere), to overcome this, we compute the repulsion of
the point xi with its 6 closest neighbors in the triangulation NTD

xi

ẋ =
n∑

xj∈N
TD
xi

rijEij (2.7)

Using these 6 neighbors, we can also compute automaticaly the value
of σi in the Gaussian repulsion. We set it to the distance to the nearest
neighbor xk over

√
2

σi =
rik√

2
(2.8)

4 ROMAIN BALP AND CHARLEY PAULUS

Figure 1. Uniform and Curvature adaptive sampling

The local Gaussian described here works very well for uniform sam-
pling, but most of the time we would like to have a curvature depen-
dant sampling. The best way to achieve this is to compute a Riemann
metric based on local curvature, but this also results in more compu-
tational efforts.
We have been working on an other repulsion scheme, which seems to
give some good results. The main idea is to compute the repulsion
in the tangent plane of the point xi: we project the 6 nearest neigh-
bors in the tangent plane, then, we minimize a concave energy using a
Levenberg-Marquardt algorithm in 2 dimension. This ensure fast con-
vergence of the particules and a pretty good sampling which can be
easily adapted to curvature.

3. Delaunay Triangulation

One of the main caracteristic of our method is that it’s based on
Delaunay triangulation. We use it for the particle sampling, and we
use it for the surface reconstruction. Hence we have a perfect trian-
gulation, the problem is that computing Delaunay is very expensive in
terms of computational operations. Each time a particule moves the
triangulation may change, and when it should be updated, how do we
update it ?
The simple and naive way, is to compute Delaunay from scratch each
time one of the Delaunay certificate becomes not valid in the triangu-
lation. A more reasonable approach is to try to recompute the trian-
gulation only where it is needed.
Basically there are two steps in the Delaunay update: first we check
that the triangulation is embedded, that is we check no cells have
changed orientation; second we verify the in sphere property. To up-
date the triangulation, there are three possibilities:

• remove all the points that violate either the embedded or the
in sphere property, we retriangulate and re-insert them,

• remove and re-insert the points one by one,
• flip the cells concerned.

In their survey on Delaunay triangulations update methods Guibas and
Russel [2] concluded that flipping was the fastest method, even if in

3D MORPHISM & IMPLICIT SURFACES 5

Figure 2. Elipsoid reconstructed from uniform and cur-
vature adaptive particel sampling

3D we may find some case where a cell is not flippable. Unfortunately,
the flip procedure is not easy to implement. For now we use the second
method, which proves to be faster than the first.
We are currently able to work interractively on surfaces with 300 points.
The Delaunay triangulation is the bottle-neck of our method, but we
believe we can optimize it, first with the flip, and second, by updating
only when the points have moved a lot in their neighborhood.

4. Surface Reconstruction

Given a set of points that lie on or near an object surface, we con-
sider the problem of computing a piecewise linear approximation of this
unknown surface. We present here the algorithm of Chaine [3] that we
use for our framework.

4.1. Convection Model. To measure the distance between a surface
Γ and a set of points Σ, Zhao, Osher and Fedkiw defined an energy
function which is a weighted area of the surface (the farthest an element
of surface is to its closest point, the bigger the weight is).

E(Γ) =

(∫
x∈Γ

dp(x)ds

)1/p

1 ≤ p ≤ ∞

where d(x) is the distance from point x to its closest point in Σ. The
goal is to find a surface that minimizes this energy (global distance).
They propose a variational equation that runs a gradient descent from
an acceptable initial enclosing of the surface towards the interior.

4.2. Convection and Computational Geometry.

4.2.1. Geometric Properties.
The result of the convection model proposed by Zhao, Osher and Fed-

kiw [5] is a triangulated oriented surface that is included into the 3D
Delaunay triangulation of the set of points. In 2D, we define a half-

edge P̂1P2 as the oriented edge from P1 to P2. This half-edge supports
the diametral half-disk located on its left side. These definitions can be
easily extended to 3D. Given a set Σ of points, the result of the convec-
tion of a bounding curve towards Σ is a closed oriented pseudo-curve
composed of a set of half-edges. These halfedges are oriented towards

6 ROMAIN BALP AND CHARLEY PAULUS

Figure 3. 2D Convection towards a 2D set of points

the interior of the curve, they are supported by edges of the 2D De-
launay triangulation of Σ and they all meet the Gabriel property. The
term pseudo-curve is used to mean that different parts of the evolving
curve can locally meet common geometric information. Cij denotes the

Figure 4. Initial bouding

piece of curve intersecting with Voronoi cells of Pi and Pj. We con-
sider the result of the convection of Cij to the surface Σ. The Voronoi
cells of Pi and Pj are adjacent, so PiPj is included into the Delaunay
triangulation of the points. In the gradient descent, the points inside
of the Voronoi cell of Pi (resp. Pj) are attracted towards Pi (resp. Pj).
The equidistant points are attracted towards the middle of PiPj. •
If the half-edge P̂1P2 does not meet Gabriel property : The half-disk

supported by P̂1P2 contains at least another point of the set. Let’s note

Pk such a point. Pk is hidden by P̂1P2. Pk is connected to Pi and Pj

in the Delaunay triangulation and lies in the half-plane delimited by

P̂1P2. The points of Cij meet the Voronoi cell of Pk on their way to

3D MORPHISM & IMPLICIT SURFACES 7

the attractor. At that time, Cij can be split into Cik and Ckj. • If the

Figure 5. Split the piece of curve when intersecting a
third Voronoi cell

half-edge P̂1P2 does not meet Gabriel property : The piece of curve Cij

does not meet a third Voronoi cell. In this case the result of convection
of Cij is P̂1P2.

4.2.2. Convection result through a geometric algorithm.
A geometric algorithm can be derived from the previous section. It

will make the surface shrink into a 3D Delaunay triangulation of the
points until it fits Σ and every half-facet meets Gabriel property.

For every facet f,

if it does not meet Gabriel property

delete f

if it does not cause local intersection for f

and its coupled half-facet

replace f by the 3 half-facets hidden by it

else

delete the coupled half-facet of f

4.3. Oriented nature of the aperture condition.
A half-edge (or a half facet in general) is shrunk if its interior half-disk

(half-ball) is empty. But the algorithm does not look at the entire ball.
It only takes into account the internal skeleton of the surface. In 2D,
it can be shown that this limitated aperture condition does not change
the result of the convection.

Figure 6. 2D Convection Property

8 ROMAIN BALP AND CHARLEY PAULUS

A discovered half-edge P̂1P2 must have its coupled half-facet meeting
the Gabriel property, unless it could not have been included into the
evolving surface.

4.4. Extension of the convection process. In presence of cavities
or pockets exceeding the size of a certain cylinder, the convection pro-
cess can be stuck. If P is a point blocking a cavity, the distance from
P and its neighbors (inside and outside the cavity) should be small
compared to the size of the blocking facet. But it is not the case in
presence of a cavity. So it is necessary to assume that the density in the
points set is characteristic of the density of the points on the surface.
The aperture condition is improved : a half-facet is now opened if its
size is not coherent with the local density of the sampling.

Figure 7. Cavity

5. Shape Transformation

5.1. Simple Morphing. It is very easy to perform morphing between
two shapes Sf and Sg using implicit surfaces. We can simply blend
their defining functions f and g with a C0 continuous blending function
w : R 7→ [0, 1], the morphing shape at the time t is simply defined by
the function

(1− w(t))f(x) + w(t)g(x) (5.1)

We can this way perform a morphing between a sphere and a torus in
a realistic way (see figure 8). But the problem with this formulation,
is that the user has no control on the transformation, and the value of
the scalar field f and g can lead to wierd results if the shapes are really
to different.

5.2. Variational Interpolation. To transform a shape into an other,
Turk and O’Brian [4] proposed to use variational interpolation. Assum-
ing those two shapes are designed in N dimension, we first put them
an N + 1 dimension space. If we call t the suplementary dimension,
we put the first shape in the hyperplane t = 0 and the second shape
in the hyperplane t = T . Then we compute a smooth function that

3D MORPHISM & IMPLICIT SURFACES 9

Figure 8. Simple morphing between a torus and a sphere

passes through them. Once this function is computed, we only need to
evaluate it at a certain t in order to get an intermediate shape of the
morphing process. To morph a 2D shape into an other for instance,
we put the first shape in a 3D space at height t = 0, and the second
shape at height t = T . Then we find a smooth 3D function that passes
through the two shapes. To get an intermediate shape, we evaluate the
function at a certain height (that represents time) between 0 and 1.

Computing this function is a particular case of variational interpo-
lation. Indeed, this general method does not necessarily need a first
shape and a second shape, but only a set of constraint points associated
with values. Given a set of constraint points {~c1, ~c2, ..., ~ck} and a set of
associated values {h1, h2, ..., hk}, we want to find a function f(~x) that
satisfies ∀i, f(~ci) = hi. This is where variational techniques are used.
We compute the energy E of the function f , which is a measurment of
its quality (the smoother, the better). Then we minimize this energy.
In 2D space, this energy is

E =

∫
Ω

(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

(5.2)

The term variational comes from the fact that we compute partial
derivatives. Variational interpolation can be extended to higher di-
mensions. In our case the goal is to create a 4D interpolation function
that will link two 3D shapes.

In order to find an interpolation function that minimizes equation
5.2, we can use weighted sums of the radial basis function φ(~x) =
‖~x‖2 · log(‖~x‖). Then we have

f(x) =
n∑

j=1

dj · φ(~x− ~cj) + P (~x) (5.3)

where

• dj are the weighted coefficients we want to compute
• φ is the radial basis function
• ~ci are the constraint points
• P (~x) is a degree 1 polynom that accounts for the linear and

constant portions of f

10 ROMAIN BALP AND CHARLEY PAULUS

Then we apply the interpolation constraints f(~ci) = hi to this equa-
tion.

hi =
n∑

j=1

dj · φ(~ci − ~cj) + P (~ci) (5.4)

We can rewrite that equation as a linear system, as it is linear with
respect to the dj and the coefficients of P (x). In 3D for instance, this
system is

φ11 φ12 · · · φ1k 1 cx
1 cy

1 cz
1

φ21 φ22 · · · φ2k 1 cx
2 cy

2 cz
2

...
...

...
...

...
...

...
φk1 φk2 · · · φkk 1 cx

k cy
k cz

k

1 1 · · · 1 0 0 0 0
cx
1 cx

2 · · · cx
k 0 0 0 0

cy
1 cy

2 · · · cy
k 0 0 0 0

cz
1 cz

2 · · · cz
k 0 0 0 0

d1

d2
...
dk

p0

p1

p2

p3

=

h1

h2
...

hk

0
0
0
0

where φij = φ(~ci − ~cj).
Using the triharmonic function φ we ensure this matrix to be non

singular, we use LU decomposition to solve this system.
In order to build the implicit function correctly, we need to specify

some boundaries constraints, so that the function knows where inside
and outside is. The values hi will be used for that. In our example,
the shape corresponds to the points satisfiying f(~ci1) = 0 = hi1 . Each
point ~ci1 has a normal ~ni1. To point ~ci2 = ~ci1−k · ~ni1 (with k a constant)
we associate hi2 = 1. It means this point is inside the shape.

Figure 9. Morphing between a sphere and a torus using
a 4D implicit surface

3D MORPHISM & IMPLICIT SURFACES 11

Figure 10. Morphing between the Stanford Bunny and
a torus using a 4D implicit surface

6. Implementation

The framework has been coded in C++ with the CGAL library on a
Linux system. The surface tracking framework and the implicit surface
computation are completely independant. The program does not run
in real time with more than 300 points because of the triangulation,
and we don’t expect it to be real time. This is still a developement
version and there are many things to fix. The goal of this project is
to be able to work on a dynamic shape interactively and to generate
a sequence of mesh in an appropriate data structure. Until now, we
have just been storing an uncompressed sequence of mesh. An other
issue is the choice of the representation of the implicit surface. There
are no efficient representation to describe a dynamic model, a lot of
work has been made for high detailed static models, and for simple
deformable shapes which are quite limited in comparison to explicit
mesh capabilities.

7. Conclusion

Implicit surfaces offer a nice alternative to perform shape transfor-
mation and in a more general way to capture moving objects, even if
they have proved to be quite complex to control compared to an ex-
plicit model like a mesh. It is easy to handle extreme topological and
geometrical changes but not to control them. We can observe that the
choice of the representation influences greatly the result, and even on
a very simple example like the sphere and the torus.
We would like to thank J.B. Debard (Master student in the lab of Com-
puter Graphics) for is great contribution on the particle sampling and
the Delaunay triangulation, and R. Chaine for providing us the source
code of her reconstruction algorithm.

12 ROMAIN BALP AND CHARLEY PAULUS

References

[1] Andrew P. Witkin and Paul S.Heckbert, Using Particles to Sample and Control
Implicit Surfaces, In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pages 269277. ACM Press, 1994.

[2] Leonidas Guibas and Daniel Russel. An empirical comparison of techniques
for updating delaunay triangulations. In SCG 04: Proceedings of the twentieth
annual symposium on Computational geometry, pages 170179, New York, NY,
USA, 2004. ACM Press.

[3] R. Chaine. A geometric-based convection approach of 3-d reconstruction. In
Symposium on Geometry Processing, pages 218229, 2003.

[4] Greg Turk and James F. O’Brien. Shape transformation using variational im-
plicit functions, In Proceedings of ACM SIGGRAPH ’99 (1999), pp. 335-342.

[5] H.K.Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level
set method. In Proceedings of IEEE Workshop on Variational and Level Set
Methods in Computer Vision (VLSM), 2001.

