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1 Description of the Algorithm

1.1 Specifications of the Project

1.1.1 Declaration

The project ConvexHull in the submit directory is developed by our team.Of the
code concerning the 3D and 2D convex hull construction, which is the kernel of this
project, we leave them totally free. But we would like to reserve the copyright to all
other code in this project.

1.1.2 Test Data

Test data are provided in the Example directory
– 2DexampleXY.txt, two dimensional example in xy plane
– 2DexampleYZ.txt, two dimensional example in yz plane
– 3D_cube.txt, a simple 3D example
– 3D_cube_plan.txt, a simple 3D example where the first 4 node lie in a plane
– pt_worst_case01.txt, a worst case of constructing a 3D convex hull
– pt_worst_case_random.txt, the above case with its points randomly disordered.

1.1.3 User Manual

After start up, the user can rearrange the sub windows to his own preference by
drag-and-drop. The user can then access the command panel for the operations, which
are listed below.

– Open Point File Open a data file, user can save his data to disk, and can also
generate the data using any text editor. In either case the file can be loaded here
in this command.

– Save Point File, save the points to a file.
– New Demo, this is just a reset of the workspace
– Random Points, this is a random point generator, a dialog would appear and guide

the user to generate some number of random points
– CH Stepping, construct the convex hull in a step by step manner.
– Automatic Stepping, run the steps automatically
– Convex Hull, Construct the convex hull in a single step
– Show Input Points, toggle showing of input points
– Show Point Number, toggle showing of the point number
– Show Facets, toggle showing of the facets
– Show Edges, toggle showing of the edge
– Show Current Vertex, toggle showing of the currently processing vertex
– Show the Horizon, toggle showing of the horizon.
A large number of experiments can be done automatically (to test the performance

of the algorithm). Select from the menu item <File
Experiments> and provide the experiment file.
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1.1.4 Project Documentation

For a set of 3D points, this program constructs the 3D or 2D convex hull. The 3D
CH construction code checks the input data, if all points lie in a same plane, it returns
and the data is translate to the 2D CH construction program.
This project is developed in VC++6.0 environment.
To compile please include the header files in JMath and JFileOp directories.
To link please link with the library files in JMath and JFileOp directories and the library
files for OpenGL opengl32.lib glu32.lib glaux.lib
The code for 3D CH construction includes :

– JSinglyList.h /.cpp, a singly linked list for storing the conflict graph mainly
– JDCELVertex.h /.cpp, a DCEL vertex
– JDCELHalfEdge.h /.cpp, a DCEL half edge
– JDCELFacet.h /.cpp, a DCEL facet
– JConvexHull.h /.cpp, for construction of the 3D CH

The code for 2D CH construction includes :
– Coord3D.h /.cpp, a vertex
– LP3D.h /.cpp, a list of 3D vertexes
– hull2D.h /.cpp, for construction of the 2D convex hull
– Wrap2D,h /.cpp, as there are compile & link problem when we try to integrate the

code developed individually, this class is for solving the problem and for making a
consistent interface as JConvexHull Other code are for providing a user interface
and for maintain the flow of the program.

1.2 Outline of the Algorithm

The algorithms we use are those described in [1] Chapter 1 and Chapter 11. Never-
theless, the implementation of this algorithm on specific points needs to be detailed.

1.2.1 implementation of the DCEL

Our algorithm uses the DCEL structure defined in [1], but both faces and vertices
contain the list Pconflict and Fconflict respectively.
In order to manage the memory and avoid any memory leak, a vertex x also contains a
counter of the number of half edges whose origin is x.

1.2.2 Finding the Horizon Border

This algorithm is not describe in [1] and, as you will see, it can have an influence on
the complexity of the algorithm. Our solution to find the horizon border is first to color
every half edge in Fconflict and using this coloration, the algorithm check every half edge
until it find one on the horizon. To find the rest of the horizon, we just iteratively turn
around each vertex of the horizon until we found the next half edge on the horizon as
shown in Figure 1
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Fig. 1: Finding the rest of the horizon from the first edge

1.2.3 Handle Degenerate Case

The only degenerate case occurs when all the points are one the same plane, this case
is detected during the construction of the first tetrahedron (first step of the algorithm)
and this case is handled by the 2D convex hull algorithm.

1.3 Complexity

The expected running time of this algorithm has been proved to be O(n.log(n)) in
[1], section 11.3. We will not re-write the whole demonstration here, but just clarify some
points as finding the horizon border, the worst case complexity and the complexity in a
special case.

1.3.1 Finding the Horizon Border

The demonstration about the complexity assumes that finding the horizon border
takes linear time in card(Fconflict, but is it the case with our algorithm ?
In fact, Fconflict can be seen as a planar graph, Euler’s formula thus implies the number
of edges is bounded : O(Nbedges ≤ Fconflict). Our algorithm first colors all edges of
Fconflict, this takes O(Fconflict), and after, it scans the edges of Fconflict a first time to
find a first edge on the horizon and scans a second time the edges to find the rest of the
horizon (in fact, this algorithm does not check every edge two times), so it also takes
O(Fconflict). This way, our algorithm return the horizon border in O(Fconflict).
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1.3.2 Using the Framework for Randomized algorithms

1 In the demonstration of the complexity provided by [1], section 11.3, the results on
the Framework for Randomized algorithms are used on a configuration space to bound
the value of

∑
e card(P (e)). Nevertheless, the configuration space has not still be proved

to be suitable.

Configuration Space :
According to [1] section 11.3, we use a configuration space (S, Π, D, K) where a flap
∆ ∈ Π is defined as an ordered 4-uple of points (p, qp, s, t) that do not lie in a plane. The
defining set D(∆) is simply the set p, q, s, t and a point x ∈ S is in K(∆) if and only if
it lies in one of the following regions :

p

h(l,t)

s

h(l,s)

tρ (q,t)

l

q

ρ (p,s)

Fig. 2:

– 1. outside the closed 3D convex wedge defined by h(l, t) and h(l, s)
– 2. inside h(l, s) but outside the closed 2D wedge defined by ρ(p, q) and ρ(p, s)
– 3. inside h(l, t) but outside the closed 2D wedge defined by ρ(p, q) and ρ(q, t)
– 4. inside the line l but outside the segment (pq)
– 5. inside the half-line ρ(p, s) but outside the segment (ps)
– 6. inside the half-line ρ(q, t) but outside the segment (qt)
Finally, τ(S) = ∆ ∈ Π |D(∆) ∈ S and K(∆) ∩ S =

1cf [1], section 9.5
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Lemma (lemma 11.5 of the [1], section 11.3) : A flap ∆ = (p, q, s, t) is in τ(S)
if and only if −→pq, −→ps and

−→
qt are edges of the convex hull C H (S), there is a facet f1

incident to −→pq and −→ps, and a different facet f2 incident to −→pq and
−→
qt. Furthermore, if one

of the facets f1 or f2 is visible from a point x ∈ P then x ∈ K(∆).

demonstration :

=> : Let ∆ = p, q, s, t be a configuration such that ∆ ∈ τ(S)
We first prove that every points of D(∆) is a vertex of C H (S) : Assume (for example)
that t is not a vertex ; then if t lies strictly inside the convex hull, it is quite easy to find
a vertex x which lie outside the convex 3D wedge defined by h(l, s) and h(l, t) (cf 1.) ;
if t lies on an edge of the convex hull, it is immediate that a vertex xon the half line
(qt) but outside the segment exits (cf 6.) ; and finally, if t lies strictly on a face of the
convex hull, then it’s also immediate that a vertex inside h(l, t) but outside the closed
2D wedge defined by ρ(q, t) and ρ(p, q) (cf 2.). Thus, in each case we can find a point
x such that x ∈ D(∆) ∩K(∆), then D(∆) ∩K(∆) 6= and so ∆ /∈ τ(S) which leads to
a contradiction. In the same way we can prove that every point of D∆) is a vertex of
C H (S).

We now prove the 3 segment (qt), (pq), (ps) are edges of C H (S) : Assume (for
example) that (qt) is not an edge of the convex hull ; then (qt) lies inside the convex hull
and since t is a vertex, there is an edge of the convex hull which start from t to a vertex
x such that x is outside the convex 3D wedge defined by h(l, s) and h(l, t) (cf 1.). Thus
x ∈ D(∆)∩K(∆), then D(∆)∩K(∆) 6= and so ∆ /∈ τ(S) which leads to a contradiction.
In the same way, we can prove that (pq) and (ps) are edges of C H (S).

<= : Let (pq) be an edge of C H (S) and p, q, s, t defined as in the Figure 2 ; then it
is obvious the flap ∆ = (p, q, s, t) is in τ(S).

1.3.3 Worst Case Complexity

Theorem : The worst case running time of this algorithm is O(n2)

demonstration : Still not solved <

Example :
We now can show an example of input configuration for which, the algorithm effectively
runs in O(n2)
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Fig. 3: Worst Case Configuration

For n, number of vertices, Nf the number of created faces during the running time, Nd

the number of deleted faces and the value which determines the running time,
∑

e P (e) :
n Nf Nd

∑
e P (e)

10003 300001 ∼= 3.n 29997 ∼= 3.n 149955003 ∼= n2

1.3.4 Special Input

In this part we will prove that under certain conditions on the input, the algorithm
can run faster.
If the set of points P has been created by uniformly picking points at random in a ball,
then we assume that the number of extreme points in a random sample of P of size r is
only O(rα for some constant α < 1. This result has been proved in [4].
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Theorem : Assume the input of the algorithm is a set S with card(S) = n.
If the number of extreme points in a random sample P ∈ S of size r is only O(rα) for
some constant α < 1, then the running time of the algorithm is O(n)

demonstration : We know from the demonstration of the complexity of this algorithm
in [1] (section 11.3), to bound the total expected running time, we have to bound the
expected value of : ∑

e

card(P (e))

Where the summation is over all horizon edges that appear at any stage of the algorithm
and P (e) = Pconflict(f1) ∪ Pconflict(f2) where f1 and f2 are the facets incident to the
edge e in the old convex hull.
Form the analysis using the Framework for randomized algorithms2, it follows :

∑
e

card(P (e)) ≤
∑
∆

card(K(∆)) (1)

≤
n∑

r=1

16.

(
n− r

r

)
.

(
E[card(τ(Pr))]

r

)

but, card(τ(Pr)) represent the number of flaps in C H (Pr), since there is two flaps
per edge and O(nedge) = O(nvertex), then card(τ(Pr)) = O(nvertex) = O(rα) ; thus :

∑
e

card(P (e)) ≤
n∑

r=1

16.

(
n− r

r

)
.

(
O(rα)

r

)

= O

(
n∑

r=1

n− r

r2−α

)

Because f(t) = n−t
t2−α decreases on [0, n], by theorem we thus can frame the sum in

the following way :

∫ n

1

n− r

r2−α
.dr ≤

n∑
r=1

n− r

r2−α
≤ (n− 1) +

∫ n−1

1

n− r

r2−α
.dr

then

O

(
n∑

r=1

n− r

r2−α

)
= O(n)

and this way
∑

e card(P (e)) = O(n)

A bound for the complexity of the algorithm with such an input therefore is O(n).

2[1], section 9.5
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2 Performance Analysis

2.1 Worst Case Analysis

We already know that the worst case configuration makes our algorithm run in
O(n.ln(n)), but what if we try a permutation on the order of the input points ? In
fact, the expected running time of this configuration, if the points are randomly handled
is linear !

Lemma : For the current configuration, with a random permutation on the input
points, the running time of our algorithm is linear.

demonstration : Obviously, the number of extreme points of such a configuration is a
constant (4). Thus we can re-use the demonstration in 1.3.4, but this time, E[card(τ(Pr))] =
O(1). Then :

∑
e

card(P (e)) ≤
∑
∆

card(K(∆))

≤
n∑

r=1

16.

(
n− r

r

)
.

(
E[card(τ(Pr))]

r

)

≤
n∑

r=1

16.(
n− r

r
).(

O(1)
r

)

= O(
n∑

r=1

n− r

r2
)

= O(n)

2.2 Experiment on the Special Input of 1.3.4

We recall that if we pick the points at random, uniformly in a d-dimensional hyper-
cube, the the expected number of extreme points is O(logd−1(n)) [4] and thus, for our
case, O(log3(n)) = O(rα) (α < 1) gives an expected running time of our algorithm in
O(n) theoretically. We now will verify this result through experiment.

Experimentation Conditions : We are using a good random number generator to
generate both sets of points randomly chosen uniformly in a cube and sets of points
which coordinates follow a Gaussian distribution. This generator is the one of L’Ecuyer
with Bays-Durham shuffle, found in Numerical Recipes (http ://www.nr.com) (We did
not implement this PRNG by ourselves).
To measure the running time, we do no measure the time our process is within the CPU
nor the time required for memory allocations, we just count

∑
e card(P (e)), which was

much easier for us to set up. This way, our results might not be as rigorous as they
should be, but what interested us is the method for the analysis.
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Experiment parameters : As input of our algorithm, we used a set of points, ran-
domly chosen uniformly in a cube and we plot running times = f(n) (n, number of
points in the input). We ran our algorithm for n from 1000 to 100000 with a step of 1000
and for each step 10 times. Here the results on the complexity Figure 4.

Fig. 4: Running T ime = f(n)

2.2.1 Estimation

Now, from a set of n ' 10000 tests on set of point of the same cardinality, we want
to calculate an estimation of the expected running time m and the variance (σ2) of the
complexity of the algorithm with such an input ; here, we will find an interval I such
that

P [m ∈ I] = 0.95
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and an interval J such that
P [σ ∈ J ] = 0.95

Notation :
We perform n experiments and we call Xi be the random variable which give the com-
plexity (∈ N) of the ist test. i.e. X measurable on the probabilist space (Ω,F , P )

X : (Ω,F , P ) → N

We call xi the value of the complexity given by our ist experiment.
We define X such that

X =
1
n

.
n∑

i=1

Xi

We define S, an estimator without bias of σ =
√

V AR[X]

S2 =
1

n− 1
.

n∑
i=1

(Xi −X)2

We also define x and s such that :

x =
1
n

.

n∑
i=1

Xi

s2 =
1

n− 1
.

n∑
i=1

(xi − x)2

Lemma 1 : X follows a Gauss law (N (m,σ2))

demonstration : Let i randomly chosen.
Xi takes its values in N and we know the worst case complexity is O(n2), thus X ∈ B
where B is a bounded interval of N. Then, obviously, X2 is integrable on (Ω,F , P ) ;
each test is realised independently and follows the same law of probability as the others.
Under those hypothesis, we can apply the theorem of central limit and say the serial X
converges in law to a random variable which follows the normal law (N (m,σ2)).
As in our case, n is high (n ' 10000), we can assume that X follows the normal law (or
Gauss’ law).

We now define X∗ :

X∗ =
√

n.
X −m

S

Lemma 2 : X∗ follows a Student law of degree n− 1
Note : Density of the Student law of degree n

f(x) =
1√
n.π

.
Γ
(

n+1
2

)
Γ
(

n
2

) .

(
1 +

x2

n

)−n+1
2

with
Γ(s) =

∫ ∞

0
ts−1.et.dt

11



demonstration : We there assume X follows a normal law. The graphs Figure 5
and Figure 6 show that our assumption is not unreasonable since we obtain a Gaussian
curve :
Figure 5 and Figure 6 represent the number of tests on sets of respectively 1000 and
5000 points which the complexity is within an interval respectively 350 and 2600 large.

Fig. 5:

As X follows a normal law, then S follows a law of χ2
n−1.

From theorem, as X follows a normal law and (n − 1).S2

σ2 follows a law of χ2
n−1, then

X∗ =
√

n.X−m
S follows a Student law of degree n− 1.

Estimation of the Expected Running Time with n tests :
Now, we will be able to give an interval I such that (for a given α)

P [m ∈ I] = 1− α

We know, X∗ = Tn−1 follows a Student law. let tβ such that P [Tn−1 ≤ tβ] = 1−β.
As the density of a Student law is symmetric, then t1−α/2 = −tα/2 and thus

P

[
−tα/2 ≤

√
n.

X −m

S
≤ tα/2

]
= 1− α
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Fig. 6:

This way, for the realisation x of X and s2 of S

I(x, s2) =
]
x− s√

n
.tα/2, x +

s√
n

.tα/2

[
Is our interval I

Results for tests on sets of 1000 points :
In this experiment, n = 10000, x = 47723 and s2 = 5, 2681.107. We have to find suitable
tα/2 such as P [Tn−1] = 1−α/2, we can read in the table given in Annexe, tα/2 = 1, 960
for α = 0, 05. Thus :

I(x, s2) =]47580, 47865[

Results for tests on sets of 5000 points :
In this experiment, n = 9511, x = 261290 and s = 37170.

I(x, s2) =]260543, 262037[
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Estimation of the variation of the running time with n tests :
We still assume X follows a normal law such that (n− 1).S2

σ2 follows a χ2
n−1 law.

Note : Density of a χ2
n−1 law

f(x) =
1

2
n−1

2 .Γ
(

n−1
2

) .xn−3
2 .e−

x
2 .1]0,+∞[

We define xβ such that P [(n− 1).S2

σ2 ≤ xβ] = 1− β, then

P

[
−x1−β/2 ≤ (n− 1).

S2

σ2
≤ xβ/2

]
= 1− β

And finally, for the realisation s2 of S2, we obtain the interval

J =
]
(n− 1).s2

xβ/2
,
(n− 1).s2

x1−β/2

[
Note : we can not give any result because we did not find the table for the χ2 law

(as the table for Student law given in Annexe) and we have no time to calculate it...

2.3 Experiment on Another Distribution

Here we we use sets of points with a Gauss’ distribution on each coordinate. We use
the same PRNG as before and make the same experiments.

First Idea about the Complexity We plot running times = f(n) (n, number of
points in the input). We ran our algorithm for n from 0 to 100000 with a step of 5000
and for each step 20 times. Here the results on the complexity Figure 7.

From what we can see on Figure 7, the complexity is still linear, but we did not prove
it. We maybe could prove the number of extreme points is very small, and we could also
maybe prove by statistical analysis that the expected complexity is linear ; but we did
not have enough time to do this.

Estimation on the expected complexity and its variation Let now assume the
complexity is linear, we want to know precisely the coefficient of linearity and we want
to know if the variation is important. According to the Figure 8, we still assume that X
follows Gauss’ law, thus all the results above remains3.

Figure 8 represents the number of tests on sets of respectively 5000 points which the
complexity is within an interval 2666 large.

3If X does not follow a Gauss’law, just the results about expected complexity remains, the estimation
on the variation is false in this case
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Fig. 7: Running T ime = f(n)
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Fig. 8:
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this way,

I(x, s2) =
]
x− s√

n
.tα/2, x +

s√
n

.tα/2

[
and

J =
]
(n− 1).s2

xβ/2
,
(n− 1).s2

x1−β/2

[
then

I(x, s2) =]214397, 216663[

Conclusion

We could have been further into the performance analysis, proving the linear expected
complexity for the 2.3 instead of assuming it, proving the variation is linear with the
number of points in input etc...
Nevertheless, we already understand the power of a statistical analysis to give rigorous,
precise and useful results.
We could have improved this study, but we did not have enough time to perform a better
analysis because computing a convex hull of more than 50000 points takes a long time
on our computer because of the lack of memory and we did not measure the complexity
from the CPU time which is the most important thing which could dodge the issues of
our performance analysis.
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La fonction de répartition de la loi de Student

n | P 0,60 0,70 0,80 0,90 0,95 0,975 0,990 0,995 0,999 0,9995
1 0,325 0,727 1,376 3,078 6,314 12,71 31,82 63,66 318,3 636,6
2 0,289 0,617 1,061 1,886 2,920 4,303 6,965 9,925 22,33 31,60
3 0,277 0,584 0,978 1,638 2,353 3,182 4,541 5,841 10,22 12,94
4 0,271 0,569 0,941 1,533 2,132 2,776 3,747 4,604 7,173 8,610
5 0,267 0,559 0,920 1,476 2,015 2,571 3,365 4,032 5,893 6,859
6 0,265 0,553 0,906 1,440 1,943 2,447 3,143 3,707 5,208 5,959
7 0,263 0,549 0,896 1,415 1,895 2,365 2,998 3,499 4,785 5,405
8 0,262 0,546 0,889 1,397 1,860 2,306 2,896 3,355 4,501 5,041
9 0,261 0,543 0,883 1,383 1,833 2,262 2,821 3,250 4,297 4,781

10 0,260 0,542 0,879 1,372 1,812 2,228 2,764 3,169 4,144 4,587
11 0,260 0,540 0,876 1,363 1,796 2,201 2,718 3,106 4,025 4,437
12 0,259 0,539 0,873 1,356 1,782 2,179 2,681 3,055 3,930 4,318
13 0,259 0,538 0,870 1,350 1,771 2,160 2,650 3,012 3,852 4,221
14 0,258 0,537 0,868 1,345 1,761 2,145 2,624 2,977 3,787 4,140
15 0,258 0,536 0,866 1,341 1,753 2,131 2,602 2,947 3,733 4,073
16 0,258 0,535 0,865 l,337 1,746 2,120 2,583 2,921 3,686 4,015
17 0,257 0,534 0,863 1,333 1,740 2,110 2,567 2,898 3,646 3,965
18 0,257 0,534 0,862 1,330 1,734 2,101 2,552 2,878 3,611 3,922
19 0,257 0,533 0,861 1,328 1,729 2,093 2,539 2,861 3,579 3,883
20 0,257 0,533 0,860 1,325 1,725 2,086 2,528 2,845 3,552 3,850
21 0,257 0,532 0,859 1,323 1,721 2,080 2,518 2,831 3,527 3,819
22 0,256 0,532 0,858 1,321 1,717 2,074 2,508 2,819 3,505 3,792
23 0,256 0,532 0,858 1,319 1,714 2,069 2,500 2,807 3,485 3,767
24 0,256 0,531 0,857 1,318 1,711 2,064 2,492 2,797 3,467 3,745
25 0,256 0,531 0,856 1,316 1,708 2,060 2,485 2,787 3,450 3,725
26 0,256 0,531 0,856 1,315 1,706 2,056 2,479 2,779 3,435 3,707
27 0,256 0,531 0,855 1,314 1,703 2,052 2,473 2,771 3,421 3,690
28 0,256 0,530 0,855 1,313 1,701 2,048 2,467 2,763 3,408 3,674
29 0,256 0,530 0,854 1,311 1,699 2,045 2,462 2,756 3,396 3,659
30 0,256 0,530 0,854 1,310 1,697 2,042 2,457 2,750 3,385 3,646
32 0,256 0,530 0,853 1,309 1,694 2,037 2,449 2,738 3,365 3,622
34 0,255 0,529 0,852 1,307 1,691 2,032 2,441 2,728 3,348 3,601
36 0,255 0,529 0,852 1,306 1,688 2,028 2,434 2,719 3,333 3,582
38 0,255 0,529 0,851 1,304 1,686 2,024 2,429 2,712 3,319 3,566
40 0,255 0,529 0,851 1,303 1,684 2,021 2,423 2,704 3,307 3,551
50 0,255 0,528 0,849 1,298 1,676 2,009 2,403 2,678 3,261 3,496
60 0,254 0,527 0,848 1,296 1,671 2,000 2,390 2,660 3,232 3,460
70 0,454 0,527 0,847 1,294 1,667 1,994 2,381 2,648 3,211 3,435
80 0,254 0,527 0,846 1,292 1,664 1,990 2,374 2,639 3,195 3,415
90 0,254 0,526 0,846 1,291 1,662 1,987 2,368 2,632 3,183 3,402

100 0,254 0,526 0,845 1,290 1,660 1,984 2,365 2,626 3,174 3,389
200 0,254 0,525 0,843 1,286 1,653 1,972 2,345 2,601 3,131 3,339
500 0,253 0,525 0,842 1,283 1,648 1,965 2,334 2,586 3,106 3,310
∞ 0,253 0,524 0,842 1,282 1,645 1,960 2,326 2,576 3,090 3,291

Soit X une variable aléatoire qui suit une loi de Student à n degrés de liberté, notée X ∼ tn.
La table donne les valeurs tn;P telles que

FX(tn;P ) déf= P(X ≤ tn;P ) = P.

Par exemple: t4;0,90 = 1, 533 ce qui implique que P(X ≤ 1, 533) = 0, 90 si X ∼ t4.
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