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In our project, we implement a practical and provably good Monte Carlo algorithm 

that finds approximating center point on a plane.  

 

1 Introduction 
 
A center point of a set P of n points in dR  is a point c of dR  such that every 

hyperplane passing through c partitions P into two subsets each of size at most 
/( 1)nd d +  (notice that there is no need that c P∈ ). This balanced separation 

property makes the center point useful for efficient divide-and-conquer algorithms in 

geometric computing and large-scale scientific computing.  

The existence of a center point of any point set follows from the classical Helly 

theorem. However, finding an exact center seems a rather difficult task. It is possible 

to compute center point by solving a set of ( )dnΘ  linear inequalities, using linear 

programming. The only improved results are that a center point in two dimensions can 

be computed in c P∈  time, and in three dimensions in 2 7( log )O n n  time; the 

two-dimensional result had been improved to linear time later. 

For most applications, it suffices to have an approximate center point, i.e. a point 

that every hyperplane through it partition P into subsets of size at least 1
1( )dn ε+ − . 

What is more, for constant β, a point dc R∈  is called a β-center if every closed 

halfspace containing c contains at least βn points of P. Thus a center point is a 
1

1d + -center. For most situations, it suffices to have a β-center with reasonable value β. 

In [1] an efficient randomized algorithm finds a 1
( 1)( 2)d d+ + -center is presented, it 

runs in 2log ( 2)2
2 2( [1 ( 1) log log (1/ )] )d

dO d d n β +⋅ + + + time, with probability of error at 

most 1/n. Where n=|P| is the number of points of P. 

Our work is to implement this algorithm for the case d=2, i.e. finds a β-center with 

β≥ 1/12 of a set of points on a plane in time 2(log )O n , with small probability of 

error.  
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2 Radon Points 
 
There is a fact important for the algorithm, Radon’s Theorem (see [1] for proof). 

 

Theorem 2.1 (Radon Theorem) If dP R⊂  with 2P d≥ + , then there is a partition 

(P1,P2) of P such that the convex hull of P1 has a point common with the convex hull 

of P2.                 

 

We will call the point common to the convex hulls of P1 and P2 a Radon Point of P. 

These kind of points are basis of the algorithm. 

 

Definition 2.2 (Radon Points) Let P be a set of points in dR , A point q is a Radon 

point of P if P can be partitioned into 2 disjoint subsets P1 and P2 such that q is a 

common point of the convex hull of P1 and the convex hull of P2.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For degenerate case, i.e. if there are three points out of the four in a plane that are 

con-linear, then the median point of the three is a Radon point. 

 

Why are Radon points useful in computing centers? A Radon point of a set of d+2 

p1 
p2 

p3 
p4

q 
q (p4) 

p1

p1
p1 

The Radon point q of four points {p1, p2, p3, p4} in 2R .  When no point is 
in the convex hull of the other three (the left figure), then the Radon point is the 
unique cross of two linear segments. Otherwise (the right figure), the point that 
is in the convex hull of the other three is a Radon point. 

Figure 1
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points is a 2/(d+2)-center of that set: any closed halfspace containing a Radon point r 

must contain a  point of P1 and a point of P2. Hence the splitting ratio of a 

hyperplane containing r is at most d/(d+2) 

 

The Radon point of a set P of more than d+1 points can be computed in 3( )O d  time 

[1]. Especially for the case d=2, a Radon point can be computed in constant time. 

 
3 The Algorithm 
 
Now we present the main algorithm that computes an approximating center point (an 

1
( 1)( 2)d d+ + -center). W.l.g., we present the algorithm for the general case when the 

dimension is d.  

  The algorithm iteratively reduces the point set by replacing groups of (d+2) points 

by their Radon points. Such a reduction is guided by a complete (d+2)-way tree. It can 

be shown that the final point of this reduction process is an approximate center point 

with high probability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A complete (d+2)-way tree of L leaves has at most 
2[1/( 2) 1/( 2) ] /( 1)L d d L d⋅ + + + + ≤ +L  internal nodes. The above algorithm takes 

3 2( /( 1)) ( )O d L d O d L⋅ + =  time. It can be proved [1] 2log ( 2)
2[( 1) log ] dL d n += +  is 

large enough to guarantee the probability that the output point is not an 
1

( 1)( 2)d d+ + -center is at most 1/n.Hence the time complexity of the algorithm can be up 

Algorithm (Iterated Radon Points): 
Input: a set of points dP R⊂  

1. Construct a complete balanced (d+2)-way tree T of L leaves. 
 
2. For each leaf of T, choose a point from P uniformly at random, independent 

of other leaves. 
 
3. Evaluate tree T in a bottom-up fashion to assign a point in dR  to each 

internal note of T such that the point of each internal node is a Radon point 
of the points with its (d+2) children. 

 
4. Output the point associated with the root of T. 
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bounded to be 2log ( 2)2
2( [( 1) log ] )dO d d n +⋅ + . For the case d=2, it is 2(log )O n . It is 

mentioned in [1] the experimental results suggest that, independent of the size of 

original point set, L=800 is sufficient for the case d=3 and L=1000 for d=4. Thus for 

the case d=2, L=800 should be sufficient. 

 

4 Computing Radon Point in A Plane  
 
For the case d=2, the algorithm needs to compute Radon point of a set of four points 

1 2 3 4{ , , , }P p p p p=  in a plane. For degenerate case, i.e. there are three con-linear 

points, from definition the median of the three points is a Radon point of P. Otherwise, 

as shown in Fig.1 there are two nondegenerate cases. Thus there are three cases in all: 

 

1. Degenerate case. i.e. there are three points of P con-linear. 

2. Nondegenerate case. The convex hull of P is a triangle. 

3. Nondegenerate case. The convex hull of P is a quadrilateral. 

 

To distinguish these cases above, the following fact will be useful: 

 

Lemma 5.1 Let 2
1 2 3{ , , }P p p p R= ⊂ , denotes 1 2 3( , , )D p p p  to be the determinant 

 

 

 

 

 

Where ,ix iyp p  denote the x,y coordinates of ip , for 1, 2,3i = . Then  

1. 1 2 3( , , ) 0D p p p =  if and only if 1 2 3, ,p p p  are con-linear. 

2. 1 2 3( , , ) 0D p p p >  if and only if 1 2 3, ,p p p  form a left turn (i.e. 

counterclockwise) 

3. 1 2 3( , , ) 0D p p p <  if and only if 1 2 3, ,p p p  form a right turn (i.e. clockwise)  

 

From lemma 5.1 above, it easy to check whether there are three points con-linear. 

Hence the task remained is to distinguish the two nondegenerate cases. 

   Let 2
1 2 3 4{ , , , }P p p p p R= ⊂  be a set of four affine independent points. It is easy 

to see: if the convex hull of P is a triangle, there are 4 2 8× =  different combinatorial 

1 1

1 2 3 2 2

3 3

1
( , , ) 1

1

x y

x y

x y

p p
D p p p p p

p p
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configurations; if the convex hull of P is a quadrilateral, there are 4!/ 4 6=  different 

combinatorial configurations. Totally 14(Fig. 2,3,4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These different configurations can be characterized by sign of the four value 

2, 3 4( , )D p p p , 3 4 1( , , )D p p p , 4, 1 2( , )D p p p  

1, 2 3( , )D p p p .Thus we can define the characterized 4-tuple of P , ( )c P  to be: 

 

Definition 5.2  Suppose 2
1 2 3 4{ , , , }P p p p p R= ⊂  to be a set of four affine 

independent points, define the characterized 4-tuple of P , ( )c P to be:   

( )2, 3 4 3 4 1 4, 1 2 1, 2 3( ) sgn( ( , )), sgn( ( , , )), sgn( ( , )), sgn( ( , ))c P D p p p D p p p D p p p D p p p=
 

where sgn( )x  denotes the sign of x , i.e. 

 

 

Figure 2 
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For the 14 different configurations, the 14 different characterized 4-tuples in 

accordance are shown in the figures. Also it is easy to check that the remained two 
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4-tuples (1,-1,1,-1) and (-1,1,-1,1) of the 42 16=  can not correspond to any actual  

 

configuration. Hence to compute Radon point of four planar affine independent points, 

we can use characterized tuples to recognize their configurations, then choose 

according point (for the first 8 configurations) or compute the intersection of the two 

according line segment (for the last 6 configurations). 

 

5 System Design and Data Structure 
 
We experiment on Windows XP operation system, in Microsoft Visual Studio .Net 

2003 environment, using VC++ language as development tool. Our experiment 

system can be divided into two parts: algorithm and display.  

 

 
 

5.1 Three classes in the algorithm 
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There are three important classes in the algorithm part: 

 

Class Point, a class describe of a single planar point 

Class RadonPointGenerator, a class to generate radon point of four planar points. 

Class CenterPointGenerator, a class to generate center point of a set of planar points. 

 
class Point 

{ 

public: 

 inline Point(int = 0, int = 0); 

public: 

 inline int GetX() const; 

 inline int GetY() const; 

 inline void SetX(int); 

 inline void SetY(int); 

private: 

 int m_nX; 

 int m_nY; 

}; 

 
class RadonPointGenerator 

{ 

public: 

 inline RadonPointGenerator(Point* = NULL); 

public: 

 void Generate(int, int, int, int, Point&); 

private: 

 int GetTurningDirection(int, int, int); 

 int GetMedianPoint(int, int, int); 

 void GetIntersectionPoint(int, int, int, int, Point&); 

private: 

 Point* m_arrPoints; 

}; 

 
class CenterPointGenerator 

{ 

public: 

 inline CenterPointGenerator(); 

 inline ~CenterPointGenerator(); 
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public: 

 void GeneratePoints(int, int, int); 

 void SelectPoints(int); 

 void Generate(); 

 double Validate(int, int&, int&); 

 void Destroy(); 

public: 

 Point* m_arrPoints; 

 int m_nPoints; 

 Point* m_arrSelectedPoints; 

 int m_nSelectedPoints; 

 int m_nCurrentIndex; 

 int m_nCurrentBound; 

 int m_nRemainedPoints; 

 Point m_ptFirst; 

 RadonPointGenerator* m_pRadonPointGenerator; 

}; 

 
5.2 important interfaces and operations 

Next we describe in detail the operations of the two classes RadonPointGenerator and 
CenterPointGenerator.  
 
A. Operations of RadonPointGenerator  

 void RadonPointGenerator::Generate(int nIndex1, int nIndex2, int nIndex3, int 
nIndex4, Point& radonPoint) 
Function：generate  Radon Point of the 4 planar points denoted by their indices 
Parameters： 
 nIndex1，nIndex2，nIndex3，nIndex4： the subscriptions of the 4 points in 
the sampling set. 
 radonPoint： Radon Point of the 4 planar points denoted by the indices，
return by reference 
Return type：void 

 
 int RadonPointGenerator::GetTurningDirection(int nIndex1, int nIndex2, int 

nIndex3) 
Function：identify the turn direction of three planar points, i.e. left turn, right turn 

or con-linear. Subroutine of RadonPointGenerator::Generate. 
Parameters： 
 nIndex1，nIndex2，nIndex3：the subscriptions of the three points in the 
sampling set. 
Return：integer,  1 denotes left return,  -1 denotes right turn,  0 denotes 

con-linear. 
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 int RadonPointGenerator::GetMedianPoint(int nIndex1, int nIndex2, int nIndex3) 

Function：get the median point of three con-linear planar points. Subroutine of 
RadonPointGenerator::Generate. 

Parameters： 
 nIndex1，nIndex2，nIndex3：the subscriptions of the three points in the 
sampling set. 
Return：integer,  subscription of the median point. 
 

 void RadonPointGenerator::GetIntersectionPoint(int nIndex1, int nIndex2, int 
nIndex3, int nIndex4, Point& intersectionPoint) 
Function：get intersection point of the two lines, which are determined by 

nIndex1 and  nIndex2, nIndex3 and nIndex4 respectively. Subroutine of 
RadonPointGenerator:: Generate. 

Parameters： 
 nIndex1，nIndex2，nIndex3，nIndex4：the subscriptions of the 4 points in the 
sampling set. 
 intersectionPoint：the intersection point, return by reference 
Return：void 

 
B．Operations of CenterPointGenerator  

 void CenterPointGenerator::GeneratePoints(int nPoints, int nWidth, int nHeight) 
Function： generate a set of planar points randomly and uniformly 
Parameters： 

  nPoints：number of points generated. 
  nWidth：width of display window. 
  nHeight：Height of display window. 

Return：void 
 void CenterPointGenerator::SelectPoints(int nSelectedPoints) 

Function：Sampling from input points set uniformly. 
Parameters： 

  nSelectedPoints：size of sampling set (power of four) 
Return：void 

 void CenterPointGenerator::Generate() 
Function：generate Center Point 
Parameters：None 
Return：void 
Implementation：By the Iterated Radon Point algorithm presented in section 3. 

 void CenterPointGenerator::Validate(int nAngle, int& nPositivePtNum, int& 
nNegativePtNum) 
Function：check quality of the Center Point found by the algorithm 
Parameters： 
 nAngle：the slope angle of the rotation line that pass through the Center 
Point. 
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  nPositivePtNum：at one moment, the number of original input points that lie 
in the positive side to (on) the rotation line.  

nNegativePtNum：at one moment, the number of original input points that lie 
in the negetive side to (on) the rotation line.  

Return：void 
 

Above all, we have described the important interfaces and operations of the 
algorithm part.  

 

5.3 Data Structure 

 
We haven’t use any complicated data structure, only the most ordinary data 
structure—array are used in our implementation. Specifically, the two places we 
use array are for the member variables Point* m_arrPoints and Point* 
m_arrSelectedPoints of class CenterPointGenerator. They are used to store the 
originally input point set and the sampling set.  
 
In section 3, the iterated algorithm is presented using a complete balanced 
(d+2)-way tree T. Actually the tree structure is only for clear presentation of the 
iterated algorithm and give an intuitive idea, it does no help for the algorithm’s 
performance. So it is simplest (also reasonable) to use array when we implement 
the algorithm, moreover this avoid paying extra time for constructing the tree and 
paying extra space to store the tree’s internal nodes. 
 

5.4 Interface 

 
We adopt menu and dialog pattern for the interface design, follows the principles 

that clear and easy to operate.  Also shortcut keys are available for quick operation. 
Our main interface is as below : 

  

Jordan
Highlight
简单数据结构即可
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There are three main menus:  File、Test、Help. Their submenus and functions are 
described respectively below : 

 
1） Submenu of ‘File’ 
 

Submenu Function Shortcut 
Export Export the original input point set to a file. Ctrl+E 

Exit Exit from the program Alt+F4 

 
 
2） Submenu of ‘Test’ 
  

Submenu Function Shortcut 
Radon Point Test the Radon Point generation algorithm  Ctrl+R 

Input Point Set Input original point set （three input manner） Ctrl+I 

Random Sample Randomly sampling from input point set  Ctrl+S 

Run Run Center Point generation algorithm，single 
step/continuous patterns are available 

Single: F10 
Continous: F5 

Validate Test the quality of Center Point  Ctrl+V 

Clear Clear screen and last input F4 
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3） Submenu of ‘Help’ 
 

Submenu Function Shortcut 
How to use Display shortcut key list F1 

About CenterPoint Brief description of the function,  
version and developers of this software 

Ctrl+A 

 
 

6 Experimental Results 
 
Our aim:  Since L is power of 4, i.e. L=4,16,64,256…. Our aim is for all the value n 

(the size of input point set) that lie in [10,  500,000], find suitable value L for the 

iterated algorithm, for both efficiency and high probability of correctness. 

 

The main experimental work are done in our lab, on the computer with Intel Pentium 

4 CPU 2.80GHz and 512MB of RAM. Which can compute and validate a center point 

of a set of 100 thousand input points in 1/20 minute. Although in the process a virus 

attack caused a serious interruption, we are glad that we obtain the experimental data 

needed at last. 

 

Interpretation of the Tables: Table i (i=1,2,…) show our experiment results. For 

instance in Table 1. For each input size n=35,40,… 95, we run the algorithm 5000 

times, each time for different input point set (which are generated by system randomly 

and uniformly) of n points, in each implementation of the algorithm we randomly 

select L=256 points from the input set to build the iteration tree. Then we count the 

times that c, the center point found by the algorithm, failed to be a β-center (recall that 

a point dc R∈  is called a β-center if every closed halfspace containing c contains at 

least βn points of P), for β=1/3 and β=1/3-1/30 respectively. We calculate the failure 

ratio (which approximates failure probability) as follows:  

 

Failure Ratio = (Failure times)/(Total Run Times) 

 

From the experiment results, we can obtain the following conclusions:  
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 Conclusion I:  Selecting L=256 points is recommended when the  
size of the point set |P| [60, ∈  500,000] .  An (1/3−1/30) -center 
can be found with small error probability (<0.01). 

 

The theoretically recommended value for L is implied in [1] to be 2
29 log n , which is 

1024 for n∈ (40, 1625] and 4096 for n∈ (1625,  2,642,245]. Moreover the 

theoretical result in [1] only ensure an 1/12-center. Thus the algorithm actually has 

much better performance than that can be seen by theoretical analysis. 

 

Table 1 - 4 below show performance of the algorithm, for the input size lie in different 

intervals and select L=256 points. From the results we can see, although the existence 

of a 1/3-center is theoretically proved, a little tradeoff between the partition ratio and 

success probability seems a good choice. I.e. if we require a (1/3-1/30)-center rather 

than a 1/3-center (which suffices for most of the applications), the failure probability 

will be much reduced. 

 

Table 1. Failure Ratio for  n<100,   L=256 Points Selected,   Run 5000 times. 

Number of 
points n: 

35 40 45 50 55 60 65 70 75 80 85 90 95 

Failure times  
(β<1/3) 

484 619 289 317 364 217 181 305 148 209 212 154 168 

Failure ratio (%) 
(β<1/3) 

9.68 12.38 5.78 6.34 7.28 4.34 3.62 6.1 2.96 4.18 4.24 3.08 3.36

Failure times 
(β<1/3− 1/30) 

163 76 105 54 68 40 39 19 49 28 29 27 30 

Failure ratio (%) 
(β<1/3− 1/30) 

3.26 1.52 2.1 1.08 1.36 0.8 0.78 0.38 0.98 0.56 0.58 0.54 0.6 

 
 
Table 2. Failure Ratio for  100≤ n<1000,   L=256 Points Selected,   Run 5000 times. 

Number of 
points n: 

100 200 300 400 500 600 700 800 900 

Failure times  
(β<1/3) 

212 92 60 62 64 57 53 68 36 
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Failure ratio (%) 
(β<1/3) 

4.24 1.84 1.2 1.24 1.28 1.14 1.06 1.36 0.72 

Failure times 
(β<1/3− 1/30) 

31 9 8 8 7 4 13 12 5 

Failure ratio (%) 
(β<1/3− 1/30) 

0.62 0.18 0.16 0.16 0.14 0.08 0.26 0.24 0.1 

 
Table 3. Failure Ratio for  1000≤ n≤ 10,000.   L=256 Points Selected,   Run 5000 times. 

Number of 
points n: 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Failure times  
(β<1/3) 

45 23 43 44 34 45 44 32 40 46 

Failure ratio (%) 
(β<1/3) 

0.9 0.46 0.86 0.88 0.68 0.9 0.88 0.64 0.8 0.92 

Failure times 
(β<1/3− 1/30) 

8 0 5 9 5 4 5 6 3 5 

Failure ratio (%) 
(β<1/3− 1/30) 

0.16 0 0.1 0.18 0.1 0.08 0.1 0.12 0.06 0.1 

 
Table 4. Failure Ratio for  20,000≤ n<500,000  L=256 Points Selected 

 Run 2000 times. Run 500 times. 
n (thousands): 20 30 40 50 60 70 80 90 100 200 300 400 500 

Failure times 
(β<1/3) 

12 12 19 9 12 12 15 14 4 7 6 4 3 

Failure ratio (%) 
(β<1/3) 

0.6 0.6 0.95 0.45 0.6 0.6 0.75 0.7 0.8 1.4 1.2 0.8 0.6 

Failure times 
(β<1/3− 1/30) 

3 1 4 2 3 2 3 3 0 2 0 1 1 

Failure ratio (%) 
(β<1/3− 1/30) 

0.15 0.05 0.2 0.1 0.15 0.1 0.15 0.15 0 0.4 0 0.2 0.2 

 
 Conclusion II:  Selecting L=1024 (or more) points give (1/3−1/30) 

-center with small error probability (<0.01). for any input size 
|P| [10,   ∈ 500,000].  
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For | | [1,10]P ∈ , the error probability fluctuates drastically, this randomized algorithm 

doesn’t work well for [1,10]n∈  even L=1024 points selected. 

 

Table 5. below show performance of our algorithm, for input size lie in [10, 300] and 

select L=1024 points. From the experimental results we can see that selecting L=1024 

points is enough for n in this interval. 

 

For input size larger than 300, since selecting 256 points already gives good solution, 

selecting 1024 points will has at least the same correct probability. But the running 

time to calculate p (which is proportional to L) will be long. 

 

For small input size, from table 1 say less than 60, classical deterministic algorithm 

such as linear programming will also be good choice. 

 

Table 5.  Failure Ratio for  10≤ n≤ 300,   L=1024 Points Selected,   Run 5000 times. 

Number of 
points n: 

10 20 30 40 50 60 70 80 90 100 150 200 250 300 

Fail times 
(β<1/3) 

1696 212 24 57 13 0 26 6 9 9 0 0 0 0 

Fail ratio (%) 
(β<1/3) 

33.92 4.24 0.48 1.14 0.26 0 0.52 0.12 0.18 0.18 0 0 0 0 

Fail times 
(β<1/3− 1/30) 

6 6 1 5 0 0 0 0 0 2 0 0 0 0 

Fail ratio (%) 
(β<1/3− 1/30) 

0.12 0.12 0.02 0.1 0 0 0 0 0 0.04 0 0 0 0 

 
 

 Conclusion III:  L=64 (or less) is not recommended.  Selecting 
L=64 points give (1/3−1/30) -center with relatively large error 
probability (>0.05).   
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Table 6.  Failure Ratio for  50≤ n≤ 900,   L=64 Points Selected,   Run 5000 times. 

Number of 
points n: 50 60 70 80 90 100 200 300 400 500 600 700 800 900 

Fail times 
(β<1/3) 

1788 1820 1374 1289 802 2746 916 923 1133 1034 755 900 850 1002

Fail ratio (%) 
(β<1/3) 

35.76 36.4 27.48 25.78 16.04 54.92 18.32 18.46 2266 20.68 15.1 18 17 20.04

Fail times 
(β<1/3− 1/30) 

822 538 467 656 613 999 415 533 378 532 314 320 470 359 

Fail ratio (%) 
(β<1/3− 1/30) 

16.44 10.76 9.36 13.12 12.26 19.98 8.3 10.66 7.56 10.64 6.28 6.4 9.4 7.18 

 
Table 7. Failure Ratio for  1000≤ n≤ 9000,   L=64 Points Selected,   Run 5000 times. 

Number of 
points n: 1000 2000 3000 4000 5000 6000 7000 8000 9000 

Failure times  
(β<1/3) 

772 809 821 795 821 826 754 800 841 

Failure ratio (%) 
(β<1/3) 

15.44 16.18 16.42 15.9 16.42 16.52 15.08 16 16.82 

Failure times 
(β<1/3− 1/30) 

284 340 347 357 342 361 362 343 358 

Failure ratio (%) 
(β<1/3− 1/30) 

5.68 6.8 6.94 7.14 6.84 7.22 7.24 6.86 7.16 

 
Table 8. Failure Ratio for  10,000≤ n≤ 500,000,   L=64 Points Selected,   Run 500 times. 
n (thousands): 10 20 40 60 80 100 200 300 400 500 

Failure times  
(β<1/3) 

77 84 68 68 71 72 68 82 82 86 

Failure ratio (%) 
(β<1/3) 

15.4 16.8 13.6 13.6 14.2 14.4 13.6 16.4 16.4 17.2 

Failure times 
(β<1/3− 1/30) 

18 38 25 24 28 34 31 34 35 38 

Failure ratio (%) 
(β<1/3− 1/30) 

3.6 7.6 5 4.8 5.6 6.8 6.2 6.8 7 7.6 
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Above all, for reasonable value n (lie in [60,  500,000]) L=256 is a good choice. An 

(1/3-1/30)-center can be found with error probability less than 0.01. The time need to 

compute and validate a (1/3-1/30)-center due to different input size is shown below: 

 

Running Time Using Intel Pentium 4 CPU 2.80GHz and 512MB of RAM 

Input size n: 10≤ n≤ 100,000 100,000≤n≤500,000 

Time to compute and 

validate: 

≤ 3 s 3 /100,000n≤  s≤ 15 s  

 
We can see that this algorithm works quite well in practice, and has much better 
performance than the theoretical proved result in [1].  
 

7 Unsolved Issues and Further Improvement 
 

1. For the display restriction, we set the coordinates of the input points to be integer. 

So there are 1024×768 different positions for any input point. When input size n 

is small, the influence of this restriction can be omitted; but when n is large, say 

n=Θ(1024 × 768), the integer restriction will lose some generalities, so the 

analysis of our experimental results can not extend to the case n≥Θ(1024×768). 

 

2. Our validate algorithm is simply for each rotating line pass through p, with 

degree {1 ,2 ,3 ,...,360 }d ∈ o o o o , check each input point which side it lies to the line. 

It is almost surely can be improved with more careful method, say by incremental 

algorithm. 

 

3. We only test the algorithm for uniform distribution point set in the plane. 

Although the analysis [1] does not depend on the distribution, it only ensure an 

1/12-center. The algorithm may perform differently for different distributions. 

This needs more analysis or experimental test about the algorithm. 
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