
 1

Approximating Center Point of Planar
Point Set with Iterated Radon Points

方启明 2004310428 李若皓 2004211044 程永席 2004310454

fangqiming@tsinghua.org.cn mouseleeky@sina.com cyx@mails.tsinghua.edu.cn

In our project, we implement a practical and provably good Monte Carlo algorithm

that finds approximating center point on a plane.

1 Introduction

A center point of a set P of n points in dR is a point c of dR such that every

hyperplane passing through c partitions P into two subsets each of size at most
/(1)nd d + (notice that there is no need that c P∈). This balanced separation

property makes the center point useful for efficient divide-and-conquer algorithms in

geometric computing and large-scale scientific computing.

The existence of a center point of any point set follows from the classical Helly

theorem. However, finding an exact center seems a rather difficult task. It is possible

to compute center point by solving a set of ()dnΘ linear inequalities, using linear

programming. The only improved results are that a center point in two dimensions can

be computed in c P∈ time, and in three dimensions in 2 7(log)O n n time; the

two-dimensional result had been improved to linear time later.

For most applications, it suffices to have an approximate center point, i.e. a point

that every hyperplane through it partition P into subsets of size at least 1
1()dn ε+ − .

What is more, for constant β, a point dc R∈ is called a β-center if every closed

halfspace containing c contains at least βn points of P. Thus a center point is a
1

1d + -center. For most situations, it suffices to have a β-center with reasonable value β.

In [1] an efficient randomized algorithm finds a 1
(1)(2)d d+ + -center is presented, it

runs in 2log (2)2
2 2([1 (1) log log (1/)])d

dO d d n β +⋅ + + + time, with probability of error at

most 1/n. Where n=|P| is the number of points of P.

Our work is to implement this algorithm for the case d=2, i.e. finds a β-center with

β≥ 1/12 of a set of points on a plane in time 2(log)O n , with small probability of

error.

 2

2 Radon Points

There is a fact important for the algorithm, Radon’s Theorem (see [1] for proof).

Theorem 2.1 (Radon Theorem) If dP R⊂ with 2P d≥ + , then there is a partition

(P1,P2) of P such that the convex hull of P1 has a point common with the convex hull

of P2.

We will call the point common to the convex hulls of P1 and P2 a Radon Point of P.

These kind of points are basis of the algorithm.

Definition 2.2 (Radon Points) Let P be a set of points in dR , A point q is a Radon

point of P if P can be partitioned into 2 disjoint subsets P1 and P2 such that q is a

common point of the convex hull of P1 and the convex hull of P2.

For degenerate case, i.e. if there are three points out of the four in a plane that are

con-linear, then the median point of the three is a Radon point.

Why are Radon points useful in computing centers? A Radon point of a set of d+2

p1
p2

p3
p4

q
q (p4)

p1

p1
p1

The Radon point q of four points {p1, p2, p3, p4} in 2R . When no point is
in the convex hull of the other three (the left figure), then the Radon point is the
unique cross of two linear segments. Otherwise (the right figure), the point that
is in the convex hull of the other three is a Radon point.

Figure 1

 3

points is a 2/(d+2)-center of that set: any closed halfspace containing a Radon point r

must contain a point of P1 and a point of P2. Hence the splitting ratio of a

hyperplane containing r is at most d/(d+2)

The Radon point of a set P of more than d+1 points can be computed in 3()O d time

[1]. Especially for the case d=2, a Radon point can be computed in constant time.

3 The Algorithm

Now we present the main algorithm that computes an approximating center point (an

1
(1)(2)d d+ + -center). W.l.g., we present the algorithm for the general case when the

dimension is d.

 The algorithm iteratively reduces the point set by replacing groups of (d+2) points

by their Radon points. Such a reduction is guided by a complete (d+2)-way tree. It can

be shown that the final point of this reduction process is an approximate center point

with high probability.

A complete (d+2)-way tree of L leaves has at most
2[1/(2) 1/(2)] /(1)L d d L d⋅ + + + + ≤ +L internal nodes. The above algorithm takes

3 2(/(1)) ()O d L d O d L⋅ + = time. It can be proved [1] 2log (2)
2[(1) log] dL d n += + is

large enough to guarantee the probability that the output point is not an
1

(1)(2)d d+ + -center is at most 1/n.Hence the time complexity of the algorithm can be up

Algorithm (Iterated Radon Points):
Input: a set of points dP R⊂

1. Construct a complete balanced (d+2)-way tree T of L leaves.

2. For each leaf of T, choose a point from P uniformly at random, independent

of other leaves.

3. Evaluate tree T in a bottom-up fashion to assign a point in dR to each

internal note of T such that the point of each internal node is a Radon point
of the points with its (d+2) children.

4. Output the point associated with the root of T.

 4

bounded to be 2log (2)2
2([(1) log])dO d d n +⋅ + . For the case d=2, it is 2(log)O n . It is

mentioned in [1] the experimental results suggest that, independent of the size of

original point set, L=800 is sufficient for the case d=3 and L=1000 for d=4. Thus for

the case d=2, L=800 should be sufficient.

4 Computing Radon Point in A Plane

For the case d=2, the algorithm needs to compute Radon point of a set of four points

1 2 3 4{ , , , }P p p p p= in a plane. For degenerate case, i.e. there are three con-linear

points, from definition the median of the three points is a Radon point of P. Otherwise,

as shown in Fig.1 there are two nondegenerate cases. Thus there are three cases in all:

1. Degenerate case. i.e. there are three points of P con-linear.

2. Nondegenerate case. The convex hull of P is a triangle.

3. Nondegenerate case. The convex hull of P is a quadrilateral.

To distinguish these cases above, the following fact will be useful:

Lemma 5.1 Let 2
1 2 3{ , , }P p p p R= ⊂ , denotes 1 2 3(, ,)D p p p to be the determinant

Where ,ix iyp p denote the x,y coordinates of ip , for 1, 2,3i = . Then

1. 1 2 3(, ,) 0D p p p = if and only if 1 2 3, ,p p p are con-linear.

2. 1 2 3(, ,) 0D p p p > if and only if 1 2 3, ,p p p form a left turn (i.e.

counterclockwise)

3. 1 2 3(, ,) 0D p p p < if and only if 1 2 3, ,p p p form a right turn (i.e. clockwise)

From lemma 5.1 above, it easy to check whether there are three points con-linear.

Hence the task remained is to distinguish the two nondegenerate cases.

 Let 2
1 2 3 4{ , , , }P p p p p R= ⊂ be a set of four affine independent points. It is easy

to see: if the convex hull of P is a triangle, there are 4 2 8× = different combinatorial

1 1

1 2 3 2 2

3 3

1
(, ,) 1

1

x y

x y

x y

p p
D p p p p p

p p
=

 5

configurations; if the convex hull of P is a quadrilateral, there are 4!/ 4 6= different

combinatorial configurations. Totally 14(Fig. 2,3,4).

These different configurations can be characterized by sign of the four value

2, 3 4(,)D p p p , 3 4 1(, ,)D p p p , 4, 1 2(,)D p p p

1, 2 3(,)D p p p .Thus we can define the characterized 4-tuple of P , ()c P to be:

Definition 5.2 Suppose 2
1 2 3 4{ , , , }P p p p p R= ⊂ to be a set of four affine

independent points, define the characterized 4-tuple of P , ()c P to be:

()2, 3 4 3 4 1 4, 1 2 1, 2 3() sgn((,)), sgn((, ,)), sgn((,)), sgn((,))c P D p p p D p p p D p p p D p p p=

where sgn()x denotes the sign of x , i.e.

Figure 2

P2

P4 P3

P1

(-1, -1 , 1, -1)

P3

P4 P1

P2

(1, 1, 1, -1)

P3

P1 P4

P2

(-1, -1, -1, 1)

P4

P1 P2

P3

(-1, 1, 1, 1)

P4

P2 P1

P3

(1, -1, -1, -1)

P2

P3 P4

P1

(1, 1, -1, 1)

1 0
sgn() 1 0

0 0

x
x x

x

>⎧
⎪= − <⎨
⎪ =⎩

 6

For the 14 different configurations, the 14 different characterized 4-tuples in

accordance are shown in the figures. Also it is easy to check that the remained two

P1

P3 P2

P4

(-1, 1, -1, -1)

P1

P2 P3

P4

(1, -1, 1, 1)

P1

P4 P2

P3

r

(1, -1, -1, 1)

P1

P3 P2

P4

r

(-1, 1, 1, -1)

P1

P2 P3

P4

r

(1, 1, 1, 1)

P1

P4 P3

P2

r

(-1,-1, -1, -1)

Figure 3

P1

P3 P4

P2

r

(1, 1, -1, -1)

P1

P2 P4

P3

r

(-1, -1, 1, 1)

Figure 4

 7

4-tuples (1,-1,1,-1) and (-1,1,-1,1) of the 42 16= can not correspond to any actual

configuration. Hence to compute Radon point of four planar affine independent points,

we can use characterized tuples to recognize their configurations, then choose

according point (for the first 8 configurations) or compute the intersection of the two

according line segment (for the last 6 configurations).

5 System Design and Data Structure

We experiment on Windows XP operation system, in Microsoft Visual Studio .Net

2003 environment, using VC++ language as development tool. Our experiment

system can be divided into two parts: algorithm and display.

5.1 Three classes in the algorithm

 8

There are three important classes in the algorithm part:

Class Point, a class describe of a single planar point

Class RadonPointGenerator, a class to generate radon point of four planar points.

Class CenterPointGenerator, a class to generate center point of a set of planar points.

class Point

{

public:

 inline Point(int = 0, int = 0);

public:

 inline int GetX() const;

 inline int GetY() const;

 inline void SetX(int);

 inline void SetY(int);

private:

 int m_nX;

 int m_nY;

};

class RadonPointGenerator

{

public:

 inline RadonPointGenerator(Point* = NULL);

public:

 void Generate(int, int, int, int, Point&);

private:

 int GetTurningDirection(int, int, int);

 int GetMedianPoint(int, int, int);

 void GetIntersectionPoint(int, int, int, int, Point&);

private:

 Point* m_arrPoints;

};

class CenterPointGenerator

{

public:

 inline CenterPointGenerator();

 inline ~CenterPointGenerator();

 9

public:

 void GeneratePoints(int, int, int);

 void SelectPoints(int);

 void Generate();

 double Validate(int, int&, int&);

 void Destroy();

public:

 Point* m_arrPoints;

 int m_nPoints;

 Point* m_arrSelectedPoints;

 int m_nSelectedPoints;

 int m_nCurrentIndex;

 int m_nCurrentBound;

 int m_nRemainedPoints;

 Point m_ptFirst;

 RadonPointGenerator* m_pRadonPointGenerator;

};

5.2 important interfaces and operations

Next we describe in detail the operations of the two classes RadonPointGenerator and
CenterPointGenerator.

A. Operations of RadonPointGenerator

 void RadonPointGenerator::Generate(int nIndex1, int nIndex2, int nIndex3, int
nIndex4, Point& radonPoint)
Function：generate Radon Point of the 4 planar points denoted by their indices
Parameters：
 nIndex1，nIndex2，nIndex3，nIndex4： the subscriptions of the 4 points in
the sampling set.
 radonPoint： Radon Point of the 4 planar points denoted by the indices，
return by reference
Return type：void

 int RadonPointGenerator::GetTurningDirection(int nIndex1, int nIndex2, int

nIndex3)
Function：identify the turn direction of three planar points, i.e. left turn, right turn

or con-linear. Subroutine of RadonPointGenerator::Generate.
Parameters：
 nIndex1，nIndex2，nIndex3：the subscriptions of the three points in the
sampling set.
Return：integer, 1 denotes left return, -1 denotes right turn, 0 denotes

con-linear.

 10

 int RadonPointGenerator::GetMedianPoint(int nIndex1, int nIndex2, int nIndex3)

Function：get the median point of three con-linear planar points. Subroutine of
RadonPointGenerator::Generate.

Parameters：
 nIndex1，nIndex2，nIndex3：the subscriptions of the three points in the
sampling set.
Return：integer, subscription of the median point.

 void RadonPointGenerator::GetIntersectionPoint(int nIndex1, int nIndex2, int
nIndex3, int nIndex4, Point& intersectionPoint)
Function：get intersection point of the two lines, which are determined by

nIndex1 and nIndex2, nIndex3 and nIndex4 respectively. Subroutine of
RadonPointGenerator:: Generate.

Parameters：
 nIndex1，nIndex2，nIndex3，nIndex4：the subscriptions of the 4 points in the
sampling set.
 intersectionPoint：the intersection point, return by reference
Return：void

B．Operations of CenterPointGenerator

 void CenterPointGenerator::GeneratePoints(int nPoints, int nWidth, int nHeight)
Function： generate a set of planar points randomly and uniformly
Parameters：

 nPoints：number of points generated.
 nWidth：width of display window.
 nHeight：Height of display window.

Return：void
 void CenterPointGenerator::SelectPoints(int nSelectedPoints)

Function：Sampling from input points set uniformly.
Parameters：

 nSelectedPoints：size of sampling set (power of four)
Return：void

 void CenterPointGenerator::Generate()
Function：generate Center Point
Parameters：None
Return：void
Implementation：By the Iterated Radon Point algorithm presented in section 3.

 void CenterPointGenerator::Validate(int nAngle, int& nPositivePtNum, int&
nNegativePtNum)
Function：check quality of the Center Point found by the algorithm
Parameters：
 nAngle：the slope angle of the rotation line that pass through the Center
Point.

 11

 nPositivePtNum：at one moment, the number of original input points that lie
in the positive side to (on) the rotation line.

nNegativePtNum：at one moment, the number of original input points that lie
in the negetive side to (on) the rotation line.

Return：void

Above all, we have described the important interfaces and operations of the
algorithm part.

5.3 Data Structure

We haven’t use any complicated data structure, only the most ordinary data
structure—array are used in our implementation. Specifically, the two places we
use array are for the member variables Point* m_arrPoints and Point*
m_arrSelectedPoints of class CenterPointGenerator. They are used to store the
originally input point set and the sampling set.

In section 3, the iterated algorithm is presented using a complete balanced
(d+2)-way tree T. Actually the tree structure is only for clear presentation of the
iterated algorithm and give an intuitive idea, it does no help for the algorithm’s
performance. So it is simplest (also reasonable) to use array when we implement
the algorithm, moreover this avoid paying extra time for constructing the tree and
paying extra space to store the tree’s internal nodes.

5.4 Interface

We adopt menu and dialog pattern for the interface design, follows the principles

that clear and easy to operate. Also shortcut keys are available for quick operation.
Our main interface is as below :

Jordan
Highlight
简单数据结构即可

 12

There are three main menus: File、Test、Help. Their submenus and functions are
described respectively below :

1） Submenu of ‘File’

Submenu Function Shortcut
Export Export the original input point set to a file. Ctrl+E

Exit Exit from the program Alt+F4

2） Submenu of ‘Test’

Submenu Function Shortcut
Radon Point Test the Radon Point generation algorithm Ctrl+R

Input Point Set Input original point set （three input manner） Ctrl+I

Random Sample Randomly sampling from input point set Ctrl+S

Run Run Center Point generation algorithm，single
step/continuous patterns are available

Single: F10
Continous: F5

Validate Test the quality of Center Point Ctrl+V

Clear Clear screen and last input F4

 13

3） Submenu of ‘Help’

Submenu Function Shortcut
How to use Display shortcut key list F1

About CenterPoint Brief description of the function,
version and developers of this software

Ctrl+A

6 Experimental Results

Our aim: Since L is power of 4, i.e. L=4,16,64,256…. Our aim is for all the value n

(the size of input point set) that lie in [10, 500,000], find suitable value L for the

iterated algorithm, for both efficiency and high probability of correctness.

The main experimental work are done in our lab, on the computer with Intel Pentium

4 CPU 2.80GHz and 512MB of RAM. Which can compute and validate a center point

of a set of 100 thousand input points in 1/20 minute. Although in the process a virus

attack caused a serious interruption, we are glad that we obtain the experimental data

needed at last.

Interpretation of the Tables: Table i (i=1,2,…) show our experiment results. For

instance in Table 1. For each input size n=35,40,… 95, we run the algorithm 5000

times, each time for different input point set (which are generated by system randomly

and uniformly) of n points, in each implementation of the algorithm we randomly

select L=256 points from the input set to build the iteration tree. Then we count the

times that c, the center point found by the algorithm, failed to be a β-center (recall that

a point dc R∈ is called a β-center if every closed halfspace containing c contains at

least βn points of P), for β=1/3 and β=1/3-1/30 respectively. We calculate the failure

ratio (which approximates failure probability) as follows:

Failure Ratio = (Failure times)/(Total Run Times)

From the experiment results, we can obtain the following conclusions:

 14

 Conclusion I: Selecting L=256 points is recommended when the
size of the point set |P| [60, ∈ 500,000] . An (1/3−1/30) -center
can be found with small error probability (<0.01).

The theoretically recommended value for L is implied in [1] to be 2
29 log n , which is

1024 for n∈ (40, 1625] and 4096 for n∈ (1625, 2,642,245]. Moreover the

theoretical result in [1] only ensure an 1/12-center. Thus the algorithm actually has

much better performance than that can be seen by theoretical analysis.

Table 1 - 4 below show performance of the algorithm, for the input size lie in different

intervals and select L=256 points. From the results we can see, although the existence

of a 1/3-center is theoretically proved, a little tradeoff between the partition ratio and

success probability seems a good choice. I.e. if we require a (1/3-1/30)-center rather

than a 1/3-center (which suffices for most of the applications), the failure probability

will be much reduced.

Table 1. Failure Ratio for n<100, L=256 Points Selected, Run 5000 times.

Number of
points n:

35 40 45 50 55 60 65 70 75 80 85 90 95

Failure times
(β<1/3)

484 619 289 317 364 217 181 305 148 209 212 154 168

Failure ratio (%)
(β<1/3)

9.68 12.38 5.78 6.34 7.28 4.34 3.62 6.1 2.96 4.18 4.24 3.08 3.36

Failure times
(β<1/3− 1/30)

163 76 105 54 68 40 39 19 49 28 29 27 30

Failure ratio (%)
(β<1/3− 1/30)

3.26 1.52 2.1 1.08 1.36 0.8 0.78 0.38 0.98 0.56 0.58 0.54 0.6

Table 2. Failure Ratio for 100≤ n<1000, L=256 Points Selected, Run 5000 times.

Number of
points n:

100 200 300 400 500 600 700 800 900

Failure times
(β<1/3)

212 92 60 62 64 57 53 68 36

 15

Failure ratio (%)
(β<1/3)

4.24 1.84 1.2 1.24 1.28 1.14 1.06 1.36 0.72

Failure times
(β<1/3− 1/30)

31 9 8 8 7 4 13 12 5

Failure ratio (%)
(β<1/3− 1/30)

0.62 0.18 0.16 0.16 0.14 0.08 0.26 0.24 0.1

Table 3. Failure Ratio for 1000≤ n≤ 10,000. L=256 Points Selected, Run 5000 times.

Number of
points n:

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Failure times
(β<1/3)

45 23 43 44 34 45 44 32 40 46

Failure ratio (%)
(β<1/3)

0.9 0.46 0.86 0.88 0.68 0.9 0.88 0.64 0.8 0.92

Failure times
(β<1/3− 1/30)

8 0 5 9 5 4 5 6 3 5

Failure ratio (%)
(β<1/3− 1/30)

0.16 0 0.1 0.18 0.1 0.08 0.1 0.12 0.06 0.1

Table 4. Failure Ratio for 20,000≤ n<500,000 L=256 Points Selected

 Run 2000 times. Run 500 times.
n (thousands): 20 30 40 50 60 70 80 90 100 200 300 400 500

Failure times
(β<1/3)

12 12 19 9 12 12 15 14 4 7 6 4 3

Failure ratio (%)
(β<1/3)

0.6 0.6 0.95 0.45 0.6 0.6 0.75 0.7 0.8 1.4 1.2 0.8 0.6

Failure times
(β<1/3− 1/30)

3 1 4 2 3 2 3 3 0 2 0 1 1

Failure ratio (%)
(β<1/3− 1/30)

0.15 0.05 0.2 0.1 0.15 0.1 0.15 0.15 0 0.4 0 0.2 0.2

 Conclusion II: Selecting L=1024 (or more) points give (1/3−1/30)

-center with small error probability (<0.01). for any input size
|P| [10, ∈ 500,000].

 16

For | | [1,10]P ∈ , the error probability fluctuates drastically, this randomized algorithm

doesn’t work well for [1,10]n∈ even L=1024 points selected.

Table 5. below show performance of our algorithm, for input size lie in [10, 300] and

select L=1024 points. From the experimental results we can see that selecting L=1024

points is enough for n in this interval.

For input size larger than 300, since selecting 256 points already gives good solution,

selecting 1024 points will has at least the same correct probability. But the running

time to calculate p (which is proportional to L) will be long.

For small input size, from table 1 say less than 60, classical deterministic algorithm

such as linear programming will also be good choice.

Table 5. Failure Ratio for 10≤ n≤ 300, L=1024 Points Selected, Run 5000 times.

Number of
points n:

10 20 30 40 50 60 70 80 90 100 150 200 250 300

Fail times
(β<1/3)

1696 212 24 57 13 0 26 6 9 9 0 0 0 0

Fail ratio (%)
(β<1/3)

33.92 4.24 0.48 1.14 0.26 0 0.52 0.12 0.18 0.18 0 0 0 0

Fail times
(β<1/3− 1/30)

6 6 1 5 0 0 0 0 0 2 0 0 0 0

Fail ratio (%)
(β<1/3− 1/30)

0.12 0.12 0.02 0.1 0 0 0 0 0 0.04 0 0 0 0

 Conclusion III: L=64 (or less) is not recommended. Selecting
L=64 points give (1/3−1/30) -center with relatively large error
probability (>0.05).

 17

Table 6. Failure Ratio for 50≤ n≤ 900, L=64 Points Selected, Run 5000 times.

Number of
points n: 50 60 70 80 90 100 200 300 400 500 600 700 800 900

Fail times
(β<1/3)

1788 1820 1374 1289 802 2746 916 923 1133 1034 755 900 850 1002

Fail ratio (%)
(β<1/3)

35.76 36.4 27.48 25.78 16.04 54.92 18.32 18.46 2266 20.68 15.1 18 17 20.04

Fail times
(β<1/3− 1/30)

822 538 467 656 613 999 415 533 378 532 314 320 470 359

Fail ratio (%)
(β<1/3− 1/30)

16.44 10.76 9.36 13.12 12.26 19.98 8.3 10.66 7.56 10.64 6.28 6.4 9.4 7.18

Table 7. Failure Ratio for 1000≤ n≤ 9000, L=64 Points Selected, Run 5000 times.

Number of
points n: 1000 2000 3000 4000 5000 6000 7000 8000 9000

Failure times
(β<1/3)

772 809 821 795 821 826 754 800 841

Failure ratio (%)
(β<1/3)

15.44 16.18 16.42 15.9 16.42 16.52 15.08 16 16.82

Failure times
(β<1/3− 1/30)

284 340 347 357 342 361 362 343 358

Failure ratio (%)
(β<1/3− 1/30)

5.68 6.8 6.94 7.14 6.84 7.22 7.24 6.86 7.16

Table 8. Failure Ratio for 10,000≤ n≤ 500,000, L=64 Points Selected, Run 500 times.
n (thousands): 10 20 40 60 80 100 200 300 400 500

Failure times
(β<1/3)

77 84 68 68 71 72 68 82 82 86

Failure ratio (%)
(β<1/3)

15.4 16.8 13.6 13.6 14.2 14.4 13.6 16.4 16.4 17.2

Failure times
(β<1/3− 1/30)

18 38 25 24 28 34 31 34 35 38

Failure ratio (%)
(β<1/3− 1/30)

3.6 7.6 5 4.8 5.6 6.8 6.2 6.8 7 7.6

 18

Above all, for reasonable value n (lie in [60, 500,000]) L=256 is a good choice. An

(1/3-1/30)-center can be found with error probability less than 0.01. The time need to

compute and validate a (1/3-1/30)-center due to different input size is shown below:

Running Time Using Intel Pentium 4 CPU 2.80GHz and 512MB of RAM

Input size n: 10≤ n≤ 100,000 100,000≤n≤500,000

Time to compute and

validate:

≤ 3 s 3 /100,000n≤ s≤ 15 s

We can see that this algorithm works quite well in practice, and has much better
performance than the theoretical proved result in [1].

7 Unsolved Issues and Further Improvement

1. For the display restriction, we set the coordinates of the input points to be integer.

So there are 1024×768 different positions for any input point. When input size n

is small, the influence of this restriction can be omitted; but when n is large, say

n=Θ(1024 × 768), the integer restriction will lose some generalities, so the

analysis of our experimental results can not extend to the case n≥Θ(1024×768).

2. Our validate algorithm is simply for each rotating line pass through p, with

degree {1 ,2 ,3 ,...,360 }d ∈ o o o o , check each input point which side it lies to the line.

It is almost surely can be improved with more careful method, say by incremental

algorithm.

3. We only test the algorithm for uniform distribution point set in the plane.

Although the analysis [1] does not depend on the distribution, it only ensure an

1/12-center. The algorithm may perform differently for different distributions.

This needs more analysis or experimental test about the algorithm.

8 References

[1]Kenneth L.Clarkson, David Eppstein, Gary L. Miller, Carl Sturtivant, and
Shang-Hua Teng. Approximating center points with iterated Radon points. Int. J.

 19

Computational Geometry & Applications 6(3):357-377, Sep 1996. Proc. 9th Symp.
Computational Geometry, ACM, May 1993, pp. 91-98.

	5 System Design and Data Structure
	5.3 Data Structure

	6 Experimental Results
	7 Unsolved Issues and Further Improvement

