
Path Planning by Using Configuration Space

Zhang, Lei Cai, Wenchao

Computer Science Dept., Tsinghua Univ. 100084

{thunderz99, xiaoxiao99}@mails.tsinghua.edu.cn

1. Abstract:

This article presents methods of path planning for a polyhedral object

(called a robot) in 2D space to move to its destination without collision with

obstacles. These obstacles are convex or non-convex polyhedra. The robot to

be moved can be either convex or non-convex. Using configuration space, this

problem can convert into path planning for a point. This is done by shrinking

the robot to a point and enlarging the obstacles correspondingly. Then the path

can be generated by visibility graph methods. But if you allow the robot to

rotate, the Cspace method transforms the workspace into Configuration space

with higher degrees of freedom, e.g. into 3D(2 translation plus 1 rotation) for

two dimension problem and 6D(3 translation plus 3 rotation) for three

dimension problem. So we restrict our work to pure motional problems. Our

work is consisted of 2 parts, first to create the configuration space, and then

solve the point path planning in the configuration space.

2. Introduction:

A robot works on a plane in the presence of obstacles. Finding a collision

free path is of importance for a robot work cell with artificial intelligence.

A popular modeling of the robot is to consider the robot as a point, which

can be obtained by transforming the workspace into C-space, then a 2D robot

whose outline is a polyhedron can be considered as a point in the 3D C-Space.

The shortest path is widely pursued objective in path planning. Although

the 2D shortest path planning was studied in 60s, the 3D shortest path (3DSP)

planning was proposed in the later 70s, motivated the by path planning for

manipulators. Lozano-Perez and Wesley proposed the general path planning

algorithm for a robot among polygons and polyhedral obstacles in 1979. In

1980, Lozano-Perez used A configuration Space Approach[LP] to solve the

problem.

Sharir and Schorr presented their studies on the 3DSP finding in [SS] in

1984. They included some basic but important observations as lemmas, such

that the shortest path on an edge forms two equal diagonal angles with the

edge, and the existence of ridge lines on polyhedra.

The general 3D shortest path planning problem is quite complex, its

NP-hard complexity makes people believe that its application prospects are

gloomy. However, the robot’s moving envelope is limited and the number of

work pieces can be a few. Thus in the light of n^O(k) complexity, where k is the

number of obstacles, the shortest path planning algorithms may still have

potential for use.

3. Obtain the Cspace of purely translational

motion robot in 2D

Let B be a rigid k-sided polygonal object free to translate in the plane

amidst a collection of polygonal obstacles 1A , . . . , mA , having n sides

altogether. Our goal is to calculate the free configuration space FP of B,

consisting of all free placements of B (i.e. placements in which B does not

intersect any obstacle). Having calculated FF, we can then decompose it into

its arcwise connected components, so that, given any pair of free placements

1Z , 2Z of B, we can determine whether they lie in the same connected

component of FP, in which case collision-free translational motion of B from 1Z

to 2Z is possible.

Note that FP is two-dimensional, as B has only two degrees of freedom. In

fact, FP can be represented in the folIowing way, initially proposed in [LP].

Take a reference point Bb , which, without loss of generality, we assume to

lie at the origin when B lies in some given standard position. For each obstacle

iA , calculate the Minkowski (vector) difference

},|{ ByAxyxBAK iii 

Here, we define the – and + for the set of point as follows:

},|{ BbAabaBA 

},|{ BbAabaBA 

}|{ AaaA 

A+B is shown in Fig.1.

Fig .1 Illustration for A+B

Thus, if there is an obstacle A, and a robot B, then K=A-B will be the

expanded A in CSpace, as shown in Fig.2.

A

B

A+B a

b

a+b

Fig.2 Illustration for K=A-B

Amidst m obstacles),...,1(mjA j  , It is clear that B lies at a free position if

and only if the reference point b does not lie in  jKK  . We can thus

represent FP as the complement cK of K, and our task thus reduces to that of

calculating the polygonal "forbidden space" K. Once we get the FP, then we

can solve the problem by planning a path for a single point robot. This is shown

in Fig.3.

B

-B A

K=A-B(expanded A in

Cspace of B)

Reference

point b

Fig.3. The FindPath problem and its solve using Cspace. The shortest path from Source to Goal are

shown in arrows

4. Shortest path among polygonal obstacles in

the plane

The classic motion planning problem is: Given a source point and a

destination point along with a set of polyhedral obstacles in two or three

dimensional Euclidean space, find out the shortest path from the source point

to the destination point without coming in contact with any of the obstacles.

Due to the limit of time and ability, we just pay our attention to the

movement of a single point in the plane.

Through out this report, we let v denote the number of the vertex and n

denote the number of the edges and k denotes the number of the obstacles. In

the practice problem, it may that k<<n and k<<v, for example, the layout of a

particular floor in an office building may be such that the hallway divide the

layout into only a few distinct connected components even though it requires

hundreds of thousands of edges/vertex to accurately describe the layout.

s

g

On this problem, we present a straightforward algorithm, the output of the

algorithm is the visibility graph of the obstacles and the Shortest Path Map

corresponding to a given start point. The SPM is a planar subdivision of size

O(n), which allows one to find the length of the shortest path to a query point in

time O(log n)(by point location), and to produce a shortest path in time O(log n

+ m), where m is the number of bends in the path.

The basic idea behind the approach is to make the visibility graph of the

obstacles. The visibility graph is the lists of the visible points for every vertex.

Given a source point, compute its available vertex directly, and find the

shortest path from the source point to every vertex based on the visibility graph,

that is Shortest Path Map. In light of SPM, given a destination point, the

algorithm just finds out the visible vertex for the destination.

1．Visibility graph

Visibility graph is the basis of the algorithm, which is a table recording the

visible vertex for every vertex. An array of two dimensions is applied for it. Fig.4

gives the simple example.

vertex Seen vertexes

V1 V2,V3,V4

V2 V1,V3,V4,V5,V7

V3 V1,V2,V5,V7

V4 V1,V2,V7,V8

V5 V2,V3,V6,V7

V6 V5,V8

V7 V2,V3,V4,V5

V8 V4,V6

Table 1: visibility graph for left plane

For a short, one vertex can be seen by another vertex if the segment of

these two vertexes doesn’t intersect the interior of any polygon. Because pair

vertexes can/cannot see each other, we can use only the pair points (vi, vj) for

(vi, vj) and (vj, vi) (where i<j). Thus, Table1 can be simplified as follow Table2.

2. Visible vertex

v1 v2

v3

v4

v5 v6

 Fig 4: two obstacles in plane

v1 just can see vertex v2, v3, v4.

v7 v8

The pair visible vertexes have been described above. We can compute

the visible vertexes pairwise according to the definition. But there is too much

useless computation. First, the two adjoining vertexes in the same polygon can

see each other, we don’t need any computation, if the polygon is convex, every

vertex will only see the adjacent vertexes in the polygon (see Fig.5); secondly,

for a vertex on another polygon, the field of view on this polygon will less than

180 degree (see Fig.6), we just need find out the right most and left most

vertex for this view vertex, if the polygon is convex, all the vertexes between

leftmost and rightmost can and only can be seen. Fig.5 and Fig.6 give the

description.

vertex Seen vertexes

V1 V2,V3,V4

V2 V3,V4,V5,V7

V3 V5,V7

V4 V7,V8

V5 V6,V7

V6 V8

V7 NULL

 Table 2: simplified visibility table

v1

v2

v3

v4

v5

v6

v7

v8

View vertex

v1

v2

v3

v5 v4

v6

v10

v7 v8 v9

View vertex

Field of view

right most

left most

3. Leftmost/rightmost vertex and intersection

Based on the analysis above, we can make the visibility graph in three

steps. In first step, compute the visibility graph in every polygon; in second

step, for every vertex, find out the leftmost and rightmost vertexes in other

Fig.6: Judge the visibility of vertexes on the polygon, we only

consideration the vertexes between left most and right most.

Fig.5: In the convex polygon, v1

only can see v2 and v8.

polygons; in last step, judge the visibility of this vertex and the vertex between

leftmost and rightmost vertexes by judging intersection.

First of all, we introduce the method to judge which side a point p3(x3, y3)

locates on a segment defined by p1(x1 , y1) and p2(x2,y2). Determinant of the

following matrix gives the answer.



















33

22

11

1

1

1

)det(

yx

yx

yx

A (1)

 If det(A)>0, p3 is on the right of the vector 21PP


, vice versa. We don’t

care about the case that three vertex are collinear, that is det(A) = 0. Using this

judgment, we can get not only the rightmost and leftmost vertex on a polygon,

but judge the intersection of two segments.

We give the formal description on the algorithm for leftmost and rightmost

vertex on a polygon:

 Given a vertex Vs, and a polygon P(V0,V1,…,Vd),

 Initial leftmost = rightmost = P0 ;

 For I:=1 to d do

 If (det(Vs,leftmost,VI)<=0)

 leftmost := VI ;

 else If (det(Vs,rightmost,VI)>=0)

 rightmost := VI ;

Now, we just have to judge whether a segment defined by two given

vertexes intersect a polygon.

We first compare the location of the segment and polygon simply, which

will discard many polygons immediately. Then we can further give the result by

computing the segment and every edge of the polygon.

Intersection of two segment can be deal with the det(A) as mention before.

The detail just likes this, if two segments AB and CD have intersection (not

include A,B,C,D), it must be A and B locate different sides of segment CD and

C and D locate different sides of segment AB. A segment don’t intersect a

polygon, we must have that it don’t intersect any edge of the polygon.

 4. Shortest path map

Given a source point S, we can generate a shortest path map based on

the visibility graph. The data structure of SPM is: associated with each vertex v

in the plane are the values

 d(v) --- length of a minimal length path between A and v,

 b(v) --- a vertex adjacent to v in the minimal path between S and v.

Hence, after SPM has been constructed, for a vertex v it is possible in O(1)

time to determine the length of a minimal path between S and v, and by using

the b(*) pointers, we can find the shortest path in time proportional to the

number of edges it contains. Furthermore, for arbitrary destination point x of

the plane that is not a vertex of any obstacle, a shortest path between S and x

can be obtained by placing a straight line segment between x and the vertex v

which can be seen by x such that the d(x ,v) + d(v) is minimum, and then

following the b(*) pointers back to S and get the shortest path.

Following is the algorithm for generating SPM:

 Initial d(S):= 0, for arbitrary vertex v, d(v) := + ;

 Compute the list of visible points of source point S, and for every vertex v’ in

this list we have that d(v’): = Distance(S,v’) (the distance of two points in the

Euclidean space), and b(v):=S

 Set Boolean variable Change: = TRUE;

 While (Change) do

 Begin

 Change: =FALSE;

 For each vertex v not in the visible list of S

 For each vertex t can be seen by v

 If (d(t)+Distance(t,v)<d(v))

 Begin

 d(v) := d(t)+Distance(t, v); b(v) := t ;Change := TRUE ;

 End

 End.

Thus, we will get SPM, and also we can consideration the destination as a

whole. To consider the robust, the algorithm deal with the destination point

separately, we only need to get the list visible points of the destination point.

Fig.7 gives a simple example to further explain the process of generating

SPM.

 Fig.8 give some results of our algorithm.

S

v1 v2

(11,S)

v3

(10,S)

v4

v5

v8

(10,S)

v7

(9,S)

v6

(12,S)

10

1
1

10

9

12

3

3 5

3

5

4
4

3

10
8

3

9

S
(0,NULL)

v1

(13,V3)

v2

(11,S)

v3

(10,S)

v4

(15,V8) v5

(17,V6)

v8

(10,S)

v7

(9,S)

v6

(12,S)

3
3 5

3

5

4
4

3

 (a) (b)

 Fig.7: (a) the mid-result just before the iteration. (b) final result of SPM.

Fig.8 PathPlanning for 40+ obstacles costing 1~2 second

5. Conclusion:

This project is aimed to develop a path planning system for a translational

robot using configuration space and extended visibility graph. The process

will be divided into 2 parts. First, generate the Cspace of 2 degrees of

freedom for the robot. Second, find the shortest path in the Cspace.

6. References

[LP] IEEE TRANSACTIONS ON COMPUTERS. VOL. C-32 NO.2

FEBRUARY 1983 LOZANO-PEREZ: SPATIAL PLANNING.

[SS] M. Sharir and A. Schorr, “On the shortest path in polyhedral spaces”,

Proc, 16th ACM Symposium on the Theory of Computing, Washington DC,

1984, pp. 144-153

[SR] J. A. Storer, J. H. Reif. Shortest paths in the plane with polygonal

obstacles. J. Assoc. Comput. Mach. 41 (1994), no. 5, 982-1012

[MS] M. Lanthier, A. Maheshwari and J.-R. Sack, "Approximating

Weighted Shortest Paths on Polyhedral Surfaces", Technical report, School of

Computer Science, Carleton University, 1996.

