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On Implementing an o(log n) Planar Point Location Algorithm

1 Introduction

Planar Point Location Problem is a fundamental subproblem in computational ge-
ometry, usually needed as an ingredient to solve larger geometric problems. In a dis-
patch system to assign policemen to the scene of a crime, the city will be partitioned
into different precincts or districts. Given a map of regions and a query point (the crime
scene), the system must identify which region contains the point. This is exactly the
problem of planar point location.

Planar Point Location Problem is also a fundamental subprogram in other areas,
such as speech identification, face reorganization and handwriting identification. The
widely used algorithms in these areas are all similar. First, thousands of characters are
drew out then a space with many dimensions are built up. Second, A Point Location
Searching in this high-dim space were run for classification (Sometimes, they will use
the nearest neighbor searching instead).

Its usage could also be found in applications that deal with geometrical data: com-
puter graphics, geographical information systems (GIS), motion planning, and CAD.
In the data structure world, the problem can be used to solve the nearest and farthest
neighbor problems in the Euclidean space, by employing a Voronoi diagram as the
polygonal subdivision. Since the Voronoi diagram has O(n logn) complexity, this re-
duction can be used to achieve optimal space bounds.

In its most general form, the problem is, given a point in the plane or in the space,
to determine which area the point belongs to. Each time you click a mouse to follow a
web link, the problem is to be solved, namely, to determine which area of the computer
screen is under the mouse pointer.

Different variations of Planar Point Location Problem include:

Is a given point inside or outside of polygon P?

The simplest version of Point Location involves only two regions, one finite, inside-
P and the other infinite, outside-P; and asks which contains a given query point. For
polygons with lots of narrow spirals, this can be surprisingly difficult to tell by inspec-
tion. The secret to doing it both by eye or machine is to draw a ray starting from the
query point and ending beyond the furthest extent of the polygon. Count the number
of times the polygon crosses through an edge. If this number is odd, we must be within
the polygon. If it is even, we must be outside. The case of the line passing through
a vertex instead of an edge is evident from context, since we are counting the number
of times we pass through the boundary of the polygon. Testing each of the n edges
for intersection against the query ray takes O(n) time. Faster algorithms for convex
polygons are based on binary search and take O(logn) time.

How many queries will have to be performed?

When we have a subdivision with multiple regions, it is always possible to repeat
the inside-polygon test above on each region in the subdivision. However, this will
waste a lot of time if we will perform many such Point Location queries on the same
subdivision. More cleverly, we can construct a grid-like or tree-like data structure on
top of our subdivision to get us near the correct region quickly. Such kind of search
structures are discussed in more detail below.

How complicated are the regions of your subdivision?
More sophisticated inside-outside tests are required when the regions of your subdi-
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vision are arbitrary polygons. By triangulating all polygonal regions first, each inside-
outside test reduces to testing whether a point is in a triangle. Such a test can be made
particularly fast and simple, at the minor cost of recording the full-polygon name for
each triangle. An added benefit is that the smaller your regions are, the better grid-like
or tree-like superstructures are likely to perform.

How regularly sized and spaced are your regions?

If all resulting triangles are about the same size and shape, the simplest point location
method imposes a regularly-spaced k x k grid of horizontal and vertical lines over
the entire subdivision. For each of the k2 rectangular regions, we maintain a list of
all the regions that are at least partially contained within the rectangle. Performing a
point location query in such a grid file involves a binary search or hash table lookup to
identify which rectangle contains query point ¢ and then searching each region in the
resulting list to identify the right one.

Such grid files will perform very well, provided that each triangular region overlaps
only a few rectangles (thus minimizing storage space) and each rectangle overlaps
only a few triangles (thus minimizing search time). Whether it will perform well is
a function of the regularity of your subdivision. Some flexibility can be achieved by
spacing the horizontal lines irregularly, as a function of the regions of the subdivision.
The slab method, discussed below, is a variation on this idea that guarantees worst-case
efficient point location at the cost of quadratic space.

How many dimensions will you be working in?

In three or more dimensions, some flavor of KD-tree will almost certainly be the
point-location method of choice. They are also likely to be the right answer for planar
subdivisions too irregular for grid files.

KD-trees decompose the space into a hierarchy of rectangular boxes. At each node
in the tree, the current box is split into a small number (typically 2 or 4 or d, where d
is the dimension) of smaller boxes. At the leaves of the tree, each box is labeled with
the small number of regions that are at least partially contained in the box. The point
location search starts at the root of the tree and keeps traversing down the child whose
box contains the query point. When the search hits a leaf, we test each of the relevant
regions against q to see which one of them contains the point. As with grid files, we
hope that each leaf contains a small number of regions and that each region does not
cut across too many leaf cells.

1.1 Problem Definition

In two dimensions, the point location problem restricts itself to a plane.In general,
The Planar Point Location Problem is defined by a set of n segments, dividing the
plane into polygons(finite and infinite). Given a query point, the goal is to find the
polygon which contains it. Segments are only allowed to touch at end-points.

Definition 1 (Planar Subdivision). A planar subdivision is a partition of plane S into
a finite collection of polygonal regions

{F17F2;F3a"'7F7n|m<OO7Vi#jaFiij ZQ;UFZZS}

by finite collection of line segments whose pairwise intersections are restricted to seg-
ment end-points.
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Definition 2 (Planar Point Location). In a plane and a planar subdivision { Fy, F5, ...},
given a query point g, decide an i, s.t. F;/capq # 0 and F; /capq = 0,Yj # i,as figure
vl

<\ <\
“

Figure 1: For a planar subdivision and a query point, the Planar Point Location Prob-
lem answers which polygon this query point locats in.

For that the storage for the polygons is much more complicated than the segments,
we are not always signal every polygon with an unique number. In the other point, the
right-hand-side polygon of a segment is unique. So we can simply output a segment
for the Planar Point Location Problem instead of a polygon. Another definition of this
problem is below,

Definition 3 (Predecessor Search). In a plane and a planar subdivision {F, Fy, ...},
given a query point q, decide an segment [, s.t. all the polygons except the one below
this segment insect q comes to an empty set,as figure

‘ Point Location [

Figure 2: The output polygon can be simply replaced by a segment, which is nearest-
upward from query point.

For that we only discuss the problem in planar, we won’t extend this definition to
higher-dimension space.
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1.2 Related Work

Since we are working in a bounded universe, we can draw an enclosing box, making
the problem finite.

Moreover, Planar Point Location Problem is one of the most fundamental and
well studied search problems in computational geometry and variants of solutions were
found for this problem. Traditional solutions achieved O(logn) query time and O(n)
space [14]. Recently in IEEE FOCS’06, Timothy Chan [1]] and Mihai Patrascu [11]
showed how this result could be improved, assuming coordinates have bounded preci-
sion.

Dobkin and Lipton [3] proposed the now-standard idea of dividing the plane into
vertical slabs, and using binary search inside each slab. This gave an O(logn) running
time with O(n?) space.

Sarnak and Tarjan [[14] developed the first linear space data structure which could
search in logarithmic time, based on planar separators. Their solution for Planar Point
Location Problem is to sweep the plane with a vertical line, inserting and deleting
segments in a binary search tree. The structure for each slab is the image of the dynamic
structure at some point in time. Using persistent binary search trees, one can record all
these images with O(1) amortized space per update.

And since then, many algorithms have been invented to solve the Planar Point
Location Problem with nearly the same query time and space complexity.

Recently, Timothy Chan [1]] and Mihai Patrascu [[11] have independently developed
a static solution for the problem in vertical slabs. It is based on a constant-time routine
which can (essentially) reduce the universe by a factor of /o, using space o. Their
works are both based on the basic idea of Fusion Tree [6,16] which was first invented
to accelerate searching on RAM model.

The Fusion Tree was invented to improve worst-case algorithms for sorting and
searching, surpassing the limitation of the information theoretic lower bound. That
is, the information theoretic bound asserts that sorting N numbers requires N log N
comparisons, which is not true in the real RAM model, when including integer division
and bitwise boolean operations. From there, the idea started.

For the Planar Point Location Problem , they used this basic structure to derive an
algorithm with query time o(logn). This is based on a judicious application of classic
data structuring ideas such as exponential trees, bucketing and persistence. Perhaps
the most interesting idea is that a subtle modification of exponential trees makes them
respect the structure of the geometric search problem considered by their solution. In

fact, with careful examinations, O (min { lolgoﬁ) g 1/ 102053 Zu’ llsgg }) query time can
be achieved with space O(n - S), where u is the word-bit length of the RAM model.




On Implementing an o(log n) Planar Point Location Algorithm

2 Traditional Algorithms

The simplest algorithm to guarantee O (log n) worst-case access is the slab method,which
draws horizontal lines through each vertex,thus creating n 4 1 ’slabs’ between the
lines.the slabs are defined by horizontal lines, finding the slab containing a particular
query point can be done using a binary search on the y-coordinate of g,which denotes
the query point.Since there can be no vertices within any slab, looking for the region
containing a point within a slab can be done by a second binary search on the edges that
cross the slab.The key point is that a binary search tree must be maintained for each
slab, for a worst-case of space if each region intersects each slab. See figures B

While this algorithm allows for point location in logarithmic time and is easy to
implement, the space required to build the slabs and the regions contained within the
slabs is at worst O(n?). While in most cases it is actually smaller than this, it is
usually significantly larger than O(n). To solve this problem, other data structures and
algorithms are used that have O(logn) point location and O(n) space requirements,
such as trapezoidal decompositions.

Figure 3: The simple algorithm begins with a subdivision for a bounded space.

A more space-efficient approach based on building a hierarchy of triangulations
over the regions also achieves for search.Worst-case efficient computational geometry
methods either require a lot of storage or are fairly complicated to implement. How-
ever, kd-trees are recommended for most general point-location. applications.

The similar problems were also discussed before.The inside-outside test for con-
vex polygons is described in, which has a very thorough treatment of deterministic
planar point location data structures. Expositions on the inside-outside test for simple
polygons include [10[,[12].

An experimental study of algorithms for planar point location is described in [4].
The winner was a bucketing technique akin to the grid file.
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Figure 4: Horizontal lines were drew through each vertex, creating n + 1 slabs. A
binary searching was used for locate query point in these slabs.

]

Block #1,

Slab

N

Block #1#2
Block #3#4#5

Block #2

Block #3| Block #1 Block #3
|
|

w4 | Block#4  Block #5

Figure 5: A second binary search on the edges that cross the slab can locate query point
finally.
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The elegant triangle refinement method of Kirkpatrick [8]] builds a hierarchy of tri-
angulations above the actual planar subdivision such that each triangle on a given level
intersects only a constant number of triangles on the following level. Since each trian-
gulation is a fraction of the size of the subsequent one, the total space is obtained by
summing up a geometric series and hence is linear. Further, the height of the hierarchy
is , ensuring fast query times. An alternative algorithm realizing the same time bounds
is [3]]. The slab method described above is due to [3] and is presented in [12].

More recently, there has been interest in dynamic data structures for point location,
which support fast incremental updates of the planar subdivision (such as insertions and
deletions of edges and vertices) as well as fast point location. Chiang and Tamassia’s
[2]] survey is an appropriate place to begin.
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3 The o(logn) Algorithm

While searching requires €2(log n)time for comparison-based algorithms, subloga-
rithmic data structures are possible for integer input(see the next section Fusion Tree
). These improved techniques have been applied to obtain faster graph algorithms for
basic problems like minimum spanning trees and shortest paths. in Chan’s [1]] and Pa-
trascu’s [[L1]], it shows, for the first time, that the known (nlogn) lower bounds for
algebraic computational trees can be broken for many of the core problems in compu-
tational geometry, when the input coordinates are integers in [0, U) with U < 2.

3.1 Point Location in a Slab

In this section, we study a special case of the 2-d point location problem: given a
static set .S of n disjoint closed (nonvertical) line segments inside a vertical slab, where
the endpoints all lie on the boundary of the slab and have integer coordinates in the
range [0, 2"), preprocess .S so that given a query point ¢ with integer coordinates, we
can quickly find the segment that is immediately above q. We begin with a few words
to explain (vaguely) the difficulty of the problem.

The most obvious way to get sublogarithmic query time is to store a sublogarithmic
data structure for 1-d successor search along each possible vertical grid line. However,
the space required by this approach would be prohibitively large O(n2"), since unlike
the standard comparison-based approaches, these 1-d data structures heavily depend
on the values of the input elements, which change from one vertical line to the next.

So, to obtain sublogarithmic query time with a reasonable space bound, we need to
directly generalize a 1-d data structure to 2-d.The common approach to speed up binary
search is a multiway search, i.e., a “b-ary search” for some nonconstant parameter b.
The hope is that locating a query point ¢ among b given elements s1, sa, ..., S could be
done in constant time. In our 2-d problem, this seems possible, at least for certain se-
lected segments s1, S2, ..., Sp, because of the following “input rounding” idea: locating
q among S1, So, ..., Sp reduces to locating ¢ among any set of segments 1, So, ..., Sp that
satisfy s1 < 51 < s2 < S2 < 53 < S3 < ..., where < denotes the (strict) belowness
relation. Because the coordinates of the s;’s are flexible, we might be able to find some
set of segments s7, Sa, ..., Sp , Which can be encoded in a sufficiently small number of
bits, so that locating among the s;s can be done quickly by table lookup or operations
on words. (After the s;’s have been “rounded”, we will see later that the query point
can be rounded as well.)

Unfortunately, previous 1-d data structures do not seem compatible with this idea.
So the Chen describe a new data structure built by the 1-d fusion tree for slab distribu-
tion and 2-d fusion subtree for the distribution in a slab. These two data structures will
be described below separately.

3.2 The Fusion Tree

We first review the standard 1-d problem of performing successor search in a static
set of n numbers, where the numbers are assumed to be integers in [0,2%). The main
idea is very simple and is encapsulated in the observation below—roughly speaking, in
divide-and-conquer, allow progress to be made not only by reducing the number of ele-
ments, n, but alternatively by reducing the length of the enclosing interval, i.e.,reducing
the number of required bits,!.
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Lemma 1. Fix b and h. Given a set S of n numbers in an interval I of length 2!, we
can divide I into O(b) subintervals such that

1. each subinterval contains at most n /b elements of S or has length 2'=" ,and

2. the subinterval lengths are all multiples of 21"

Proof. Form a grid over I consisting of 2" subintervals of length 2!=". Let B contain
the ([in/b])*" smallest element of S for i = 1,...,b. Consider the grid subintervals
that contain elements of B. Use these O(b) grid subintervals to subdivide I. Note that
any “gap” between two such consecutive grid subintervals do not contain elements of
B and so can contain < n/b elements(See Figure @) O

The lemma above suggests a simple tree structure for 1-d successor search. Because
of 2., we can represent each endpoint of the subintervals by an integer in [0, 2"), with
h bits. We can thus encode all O(b) subintervals in O(bh) bits, which can be packed
into a single word if we set h = |ew/b]| for a sufficiently small constant € > 0.We
recursively build the tree structure for the subset of all elements inside each subinterval.
We stop the recursion when n < 1(in particular, when [ > 0).Initially, [ = w. Because
of 1.,in each subproblem,n is decreased by a factor of b or [ is decreased by h. Thus,
the height of the tree is at most log, n + w/h = O(log, n + b).

To search for a query point ¢, we first find the subinterval containing ¢ by a word
operation (for that word operation is not the important detail in the algorithm and is
associated by the hardware, we do not discuss it here). We then recursively search
inside this subinterval. (If the answer is not there, it must be the first element to the right
of the subinterval; this element can be stored during preprocessing.) By choosing b =
|vIogn |, for instance, we get a query time of O(log, n + b) = O(logn/loglogn).

3.3 The 2-D Fusion Tree

We now present the data structure for point location in a slab. The idea is to allow
progress to be made either combinatorially(in reducing n) or geometrically (in reducing
the length of the enclosing interval for either the left or the right endpoints).

Lemma 2. Fixband h. Let S be a set of n disjoint segments, where all left endpoints lie
on an interval I of length 2! on a vertical line, and all right endpoints lie on an interval
J of length 2™ on another vertical line. We can find O(b) segments sg, $1,... € S in
sorted order, which include the lowest and highest segment of S, such that

1. for each i, there are at most n/b segments of S between s; and s;11, or the left
endpoints of s; and s; 1 lie on a subinterval of length 2'=", or the right endpoints of
s; and s;y1 lie on a subinterval of length 2™~", and

2. there exist segments Sg, Sa, ..., With S < So < S2 < S3 < ...and endpoints on I and
J, such that distances between left endpoints of the $;’s are all multiples of 2'=" and
distances between right endpoints are all multiples of 2™~ ".

Proof. Form a grid over I consisting of 2" subintervals of length 2!=" | and a grid
over J consisting of 2" subintervals of length 2™~". Let B contain the (|in/b|)t"
lowest segment of S for all i = 1,...,b. Set s¢ to be the lowest segment. For i =
0,2,4, ...(until the highest segment is reached), set s; 1 to be the highest segment of B
such that the left endpoints of s; and s; 11 are in the same grid subinterval or the right
endpoints of s; and s;; are in the same grid subinterval. Set s; 2 to be the successor
of s;+1 in B. Since the left endpoints of s; and s;49 are in different grid subintervals

10
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and the right endpoints of s; and s;49 are in different grid subintervals, we can round
s; to a new segment §; to satisfy 2.(See Figure [0). O

For the w-bit computing we need to finish the algorithm, the data structure must be
designed for it. Because of 2., we can represent each endpoint of the s;’s as an integer
in [0,2"), with h bits. We can thus encode all O(b) segments Sy, $2, ... in O(bh) bits,
which can be packed in a single word if we set h = |sw/b]| for a sufficiently small
constant € > 0. We recursively build the tree structure for the subset of all segments
strictly between s; and s;11. We stop the recursion when n < 1 (in particular, when
Il < 0orm < 0). Initially, I = m = w. Because of 1., in each subproblem, n is
decreased by a factor of b, or [ is decreased by h, or m is decreased by h. Thus, the
height of the tree is at most log, n + 2w/h = O(logy n + b).

-~ s4
’,’_ | S—
- e

CY (b) (©

Figure 6: (a) The rounding idea: locating among the solid segments reduces to locat-
ing among the dotted segments. (b) Proof of Lemmal[l} elements of B are shown as
dots. (c) Proof of Lemma 2} segments of B are shown , together with the constructed
sequence sg, 51, .-

Given a query point , we first locate ¢ among the s;’s by a word operation. With
one extra comparison we can then locate ¢ among sy, S92, S4, ..., and with one more
comparison we can locate ¢ among all the s;’s and answer the query by recursively
searching in one subset. By choosing b = | v/logn |, for instance, we get a query time
of O(log, n +b) = O(logn/loglogn).

The data structure clearly requires O(n) space. Since the segments s;’s and §;’s can
be found in linear time for pre-sorted input, the preprocessing time after initial sorting
can be bounded naively by O(n) times the tree height, i.e.,O(n log n/ loglog n)(which
can actually be improved to O(n) with more work). Sorting naively takes O(n logn)
time, which can be improved by known results.

3.4 Word Operations

For that the word operation is also a key point in this algorithm and there are many
problems in the operations which defined by the author. But we only describe the
advantages here and the disadvantage will be discussed in the next section.

We have assumed above that we can locate ¢ among the s;’s in constant time, given
O(b) segments §1, Sa, ..., satisfying 2., all packed in one word. We now show that
this nonstandard operation can be implemented using more familiar operations like
multiplications, divisions, shifts, and bitwise-ands.

First, by a projective transformation, we may assume that the left endpoint of s;
is (0, d;) and the right endpoint is (2", b;), where the ;s and b;’s are increasing se-

11
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quences of integers in [0,2"). For example, the mapping below transforms two inter-
vals I = {0} x [0,2") and J = {C} x [D, D +2™)to {0} x [0,2")and {2"} x [0,2")
respectively:

2htmy 2"[Cy — D) )
20(C — x) +2ma’ 2H(C — z) + 2mx

(The line segments s;’s are mapped to line segments, and the belowness relation is
preserved.)

We round the query point g, after the transformation, to a point ¢ with integer
coordinates in [0, 2"). (Note that § can be computed exactly by using integer division
in the above formula.) Observe that a unit grid square can intersect at most two of
the s;’s, because the vertical separation between two segments (after transformation)
is at least 1 and consequently so is the horizontal separation (as slopes are in the range
[-1,1]). This observation implies that after locating g, we can locate ¢ with O(1)
additional comparisons.

To locate ¢ = (&, ) for h-bit integers before & and ¢, we proceed as follows. Let
(z1]|z2]...) denote the word formed by O(b) blocks each of exactly 2(h + 1) bits, where
the i-th block holds the value z; (recall that bh < ew ). We precompute (dgp|dz|...) and
<b~0|b~2|...) during preprocessing by repeated shifts and additions. The y-coordinate of
$; at & is given by [d;(2" — &) + b;Z]/2". With two multiplications and some additions
and subtractions, we can compute the word (G (2" — &) + boZ|az(2" — ) + ba|...).
We want to compute the rank of 2jjamong the values encoded in the blocks of this
word. This subproblem was solved before [[7].

() = (

3.5 The o(logn) Algorithm

We now tackle the 2-d point location problem in the general setting: given a static
planar subdivision formed by a set S of n disjoint open line segments with O(w)-bit
integer or rational coordinates, preprocess S so that given a query point g with integer
or rational coordinates, we can quickly identify (a label of) the face containing . By
associating each segment with an incident face, it suffices to find the segment that is
immediately above q.

The result of the previous section naively yields an O(n?)-space data structure with
O(min{logn/loglogn, /w/logw} query time: Divide the plane into O(n) slabs
through the x-coordinates of the endpoints and build our 2-d fusion tree inside each
slab (note that the endpoints of the segments clipped to the slab indeed are rational
numbers with O(w)-bit numerators and denominators). Given a query point ¢, we can
first locate the slab containing g by a 1-d successor search on the xz-coordinates and
then search in this slab. The preprocessing time is o(n? logn).

We can improve the preprocessing time and space by applying known computational-
geometric techniques for point location, for example, using a b-ary version of the seg-
ment tree or the trapezoid method [13]. To get linear space, though, we adopt a random
sampling method [[15] or a planar separator method [9]. The former is simpler to imple-
ment, but the latter is deterministic and also has linear preprocessing time for connected
subdivisions. As the author in the main paper we read, it was also mentioned that these
two methods are both not easy to implement. So in our algorithm , we only use the
O(n?) space but o(log n) query time algorithm for demo and testing.

12
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4 Project Overview

4.1 Implemented Algorithm

For that the algorithm the paper proved to achieve the linear space is not fit for
implementing, we only use the 2-D Fusion tree for both the slab search (while we can
regard a slab a block in a bigger slab for all the slabs) and the slab-inside location
and achieve the o(logn) query time algorithm. More details in our implement will be
described below.

First, we split the plane to O(n) slabs according to all the vertices and build a fusion
tree for this structure. The two parameter in this part were the branch number b and the
word length w. For that the best w is the integer length, and although we can extend
w to get a more effective and lower-depth tree, but it is not easy to implement another
basic arithmetic for integer longer than 64 bits in our personal computer. So we set w
to be 64 and b can be alternative between [2,4]. The upper bound 4 is decided by the
fusion tree algorithm and w. And , we assumes that the initial points are all located on
the integers, so in this step every thing go well without any precision problem.

Secondly, after we located the query point ¢ into a slab, we will locate the query
point ¢ to a block. In this step we build a 2-d fusion tree and do a b-ary searching
in this fusion tree. In this step, we have two problem to solve. The two parameter as
mentioned above have to be determined. Also, we change the branch number from
2 to 4, and set the word size w to be 64 as our computer integer word size. But the
other problem is the precision we don’t meet in the first step. Although all initial points
are all locate on integers, but the point of intersection of segments are not always on
integers. We have to deal with it. For that we can easily found that the coordinate of
intersection is rational number, so they can presented by a 2w-bit integer. But it is not
very easy to develop an O(1) arithmetic system for 2w-bit rational numbers(although
the O(w) arithmetic system is trivial), so we use a precision-time tradeoff here. We
treat all numbers with the same denominator 2" and so their error ratio will be less
than 27", In our slab decision algorithm, we first map the anomalous into a square and
do the location checking in O(1) time.

We use only one algorithm module for slab location in the first two step for conve-
nience. In the first 1-D Fusion Tree , we treat the whole plane as a horizontal slab and
use two sufficient horizontal line as the two slab bounds. In the second step, we use it
as what it is.

Finally, we display the path in the fusion trees and the point location with a JAVA
application program.

4.2 User Manual

The Project was compiled with J2SE 6.0.
You can :

1. Draw polygons
(a) Directly draw polygons in the canvas by draw series points and connect
them;
(b) While moving on the canvas, the coordinates will be display on the right;

(c) After drawing, the graph can be saved and reloaded;

13
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Start/Restart the algorithm/
Display the 2D Fusion SubTree

Figure 7: a screen shot for the interface: the main window

(d) Or the random generation can initialize a large set of polygons;
2. Query

(a) Select a point to query its location; Click on the canvas to query directly;
(b) Result will be displayed as Figure[7] the polygon is limited in a slab;

(c) The 2-D Fusion Tree Can be displayed in another window;

(d) The operation log displayed on right

3. Checkout the data structure

(a) Use the "Display Tree” button to display the Fusion Tree 8}
(b) Use "Ctrl+1,2,3,4” To change the orientation of the tree;
(c) Right click to zoom in/out;

(d) Drag to see the hidden part;

(e) Click to spread an sub tree node;
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[rudl] [al] frull [COT [rwil] [ruaall] [rall] [rwall]

The encode number
The two endpoint of for this node

this node

[ soaeh > B

Node displayed in
reduce mode
The encode number
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Figure 8: a screen shot for the interface: tree display

5 Discussion

5.1 Further Theoretical Result

The author use some analysis to achieve the O(n) space, but it is not feasible to
implement. So we perform a brief mathematical calculations it here without practicality
to validate our foreground.

Take a random sample R C S of size r. We first compute the trapezoidal decom-
position T(R): the subdivision of the plane into trapezoids formed by the segments of
R and vertical upward and downward rays from each endpoint of R. This decomposi-
tion had O(r) trapezoids and is known to be constructible in O(r log ) time. We store
T(R) in a point-location data structure, with Py(r) preprocessing time, Sq(r) space
and Qo(r) query time.

For each segment s € S, we first find the trapezoid of T'(R) containing the left
endpoint of s in Qo(r) time. By a walk in T'(R), we can then find all trapezoids
of T'(R) that intersects s in time linear in the number of such trapezoids(note that s
does not intersect any segment of R and can only cross vertical walls of T'(R)). As a
result , for each trapezoid A € T(R) , we obtain the subset Sa of all segments of S

intersecting A. The time required is O (nQo(r) + X aeT(R) |SA|).
By a standard analysis of Clarkson and Shor, the probability that

Y ISal=0(n)

A€T(R)

and

MATAeT(R) |Sal = O((n/r)logr)

is a greater than a constant. As soon as we discover that these bounds are violated,
we stop the process and restart with a different sample; the expected number of trials
is constant. We than recursively build a point-location data structure inside A for each
subset Sa.

The expected preprocessing time P(n) , worst-case space S(n), and worst-case
query time ()(n) satisfy the following recurrences for some n;’s with > . n; = O(n)
and n, = O((n/r)logr)

15



On Implementing an o(log n) Planar Point Location Algorithm

P(n) = ZP(ni) + O(Po(r) + nQo(r))
S(n) = Z S(n;) + O(So(r))

Q(n) = maz;(n;) + O(Qo(r))

To reduce space further, we use the new method and create new bounds ,for some
constant ¢. We than obtain the following bounds, where ) . n; = O(n) and n; =

O((n/r)logr):

logr
)

P(n) = _ P(n:) + O(Fo(r) +nQo(r)) = O(nlog(n/r)) + rlog"r + "loglogr

S(n) = Z S(n;) + O(So(r)) = O(n + rlogtr)

logr

Q(n) = max;(n;) + O(Qo(r)) = O(log(n/r) + )

Setting r = |n/log®n| this time yields O(nlogn/loglogn) expected prepro-
cessing time, O(n) space, and O(logn/loglogn) query time.

loglog r

5.2 Shortage

The first disadvantage for this algorithm is the model they used. Up till now, the
most popular model for computational geometry, for good reasons, is the unit-cost real
RAM, but not this one. And in practice, we do not have infinite precision as assumed by
the real RAM. For that discussion on robustness and the exact arithmetic paradigm in
computational geometry often assumes w-bit integer or floating-point input and opera-
tions on w-bit words, the author build this w-bit integer model is also understandable.

Second, the algorithm without exact presentation for the rational number will oc-
cur errors sometimes (We assume that all the rational number all with a same but big
enough denominator, but unfortunately, sometimes it will fail). This error ratio is based
on the presentation for all points in the subdivision. Initially, all points are located in
integers and w-bit word is enough and effective. But in our algorithm, the intersection
between slab bounds and segments are not always integers and they can not presented
by a w-bit words.And if we treated them as integers an error will occur.This error is
very tiny but if the query point is located very near the segment between this “error”
point, it will make the wrong result. The author do not mentioned this problem in
his paper for some reason, but it is the existence in the realization. So we use this
ZOOM-in-out technique to avoid error ratio in a majority of usual cases. See figure
52

Third, the branch number b is bounded on [2, 4] in our usual 64-bit computer and
b = |log n] can not be achieved. Because every $; needs at least h bits for presentation
in theory and 2h + 1 bits in practise. and we also need O(bh) = w for upper bound
analyze. So in deed, if we use an common h = 3 parameter, b < w/(2h + 1) =
|64/7] = 8.More strictly, we use b x (2h + 1) < w/2 for rational numbers, we will
find that b < 4. So we will have not many choices and can only build a tree with 4
branches at most in practice.

16



On Implementing an o(log n) Planar Point Location Algorithm

a
b a b a b
s |
f
e
q
d €
4 d c d c

(@) (b) (c)

Figure 9: (a) The initial block in a slab with a segment (e, f) and a query point ¢
(b) The linear map will not change the up/below relationship between them (c) If the
precision is not enough, the rational number will occur a error.
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