
 1

Pattern Matching Using the Hausdorff Distance

——Computational Geometry Project

Li Zhuang, Yi Deng, Yangzhou Du

T

A B

2001.1

 2

Abstract

One of the basic problem in pattern recognition is point sets matching: Given two sets of

points, find the transformation that transforms one point set so that its distance from the other

point set is minimized. Since perturbation errors of extracted feature points and the presence of

outlying data points are inevitable, it is very important to find a distance measure between the two

point sets that is robust to these effects. According to this, we measure the distance using the

partial Hausdorff distance.

Point matching can be a computationally intensive task, especially when large point set are

involved and when the transformation space has many degree of freedom. Here, we employ two

efficient algorithms to solve the problem, in an attempt to reduce its computational complexity,

while providing acceptable result. The first method is an approximation algorithm based on

branch-and-bound approach, it is possible to achieve a tradeoff between the quality of result and

the running time. The second method operates within the framework of the first method but

accelerate it by using point alignments. We demonstrate the algorithms’ performances on

synthetically generate data. Moreover, we apply them on finding facial feature points in images

and show some preliminary results.

1. Introduction

In pursuing an image registration task, we are given two images of roughly the same scene,

and are asked to determine the transformation that most nearly maps one image into the other.

Based on point pattern matching, the problem can be defined abstractly as follows. Given two

point sets A and B lying in two different space, a space T of transformations mapping one space

into the other, a measure of distance between any two point sets, to find the transformation t∈T

that minimizes the distance between t(A) and B.

In an attempt to arrive a sound registration scheme, we explore two efficient algorithms that

are both accurate and fast. We show the overview of these two algorithms according to the

following four factors, proposed by Brown for classifying any image registration method.

1.1 Feature space

Feature space is the domain in which information for matching is extracted. Specifically, we

consider feature points that were extracted in the image domain. They may be control points,

corners, line segments, etc. All of them are assumed to be available as a result of applying

standard feature extraction algorithms. It is important to notice that feature extraction process

would yield unexpected result. The first is perturbation errors, which result from a combination of

the image digitization process, expansion or shrinkage of objects due to variations in lighting

conditions, and the failure of the feature extraction algorithm. The second source of error is the

presence of outliers, which can result from many sources, the fact that the two images cover

different regions, the presence of occluding objects in images, and the sensitivity of the feature

extraction algorithm to variations in lighting, point of view, or other aspects of imaging process.

 3

1.2 Search space

Search space is The class of transformations that establish the correspondence between the

sensed image and the reference data. Specifically, we consider two-dimensional affine

transformations, allowing for translation, rotation, scaling along each axis, and shearing. Using

homothetic coordinates expressing, any linear transformation in the plane can be expressed as

affine transformation. Usually, we consider such common subspaces of transformations as

translation only, rigid motions (translation, rotation and possibly reflection), homothetic

transformations (translation, rotation and uniform scaling). Our algorithm methodology can be

applied to any reasonable space of transformations of bounded dimensionality.

1.3 Search strategy

We use two search strategies for finding the optimal transformation. The first is based on a

branch-and-bound search of transformation space, and the second combines this with a method

based on alignment judiciously chosen candidate feature points. The first method has the

advantage that it can provide arbitrarily good guarantees on the accuracy of the final match, and

that it naturally uses a priori information to bound the search. The main problem with this method

is that the nature of the search leads to rather high running times. The second method is very easy

to implement, but it cannot generate results with better than a fixed constant error, and does not

lend itself easily to exploiting a priori information in the search.

1.4 Similarity metric

The figure of merit assigned to a match that is determined by a specific transformation is

based on the (directional) partial Hausdorff distance. This is a robust measure, it consider the set

of distances resulting from taking each point in one set, and finding the nearest point to it in the

other set. Rather than taking the sum or the maximum of these distances, which may be affected

by outliers, we consider the median or, in general, the k-th smallest distance. More formally, given

two point sets A and B, and a parameter k, 1≤k≤|A|, we define the directed partial Hausdorff

distance from A to B to be

   badKBAh
Bb

th

Aak ,min,




where K
th

 returns the k-th smallest element of the set, and where d(a,b) is the Euclidean

distance from a to b. The parameter k is typically based on a priori bounds on the number of points

of A that are expected to have close matches in B under the optimum transformation. These are the

inliers.

2. The Branch-and-Bound Algorithm

Both of our registration algorithms are based on a branch-and-bound framework, we will

 4

describe the branch-and-bound algorithm in this section. For conveniences, we introduce some

definitions and notations.

2.1 Definitions and Notations

 A and B, the given two point sets, they are fixed for the remainder of the discussion.

 T, a space of transformations.

 τ, τ∈T, a concrete transformation.

 q, a distance quantile, 0<q≤1, define Hq(A,B) to be Hk(A,B), where k=ceil(q*|A|).

 simq(τ), the similarity measure of τ, i.e., simq(τ) = Hq(τ(A),B).

 τopt, the optimum transformation.

 simopt, the optimum similarity, i.e. simopt = H(τopt(A), B) = min H(τ(A),B).

 M and t, parameters for affine transformation. For any a = (a1, a2)∈A, τ(a) = Ma + t.

 εr, the relative error bound.

 εa, the absolute error bound.

 εq, the quantile error bound.

 q' = (1 - εq)q, the weak quantile. Note that since q'≤q, we have simq’(τ)≤simq(τ), for any τ

∈T.

 τ is approximately optimal relative to εr, εa and εq, if either simq’(t)≤(1+εr)simopt or simq’(t)

≤simopt + εa holds.

 Tree, node and cell. We construct a search tree, where each node of the tree is identified with

the set of transformations contained in some axis-aligned hyperrectangle in the

six-dimensional transformation space. These hyperrectangles are called cells.

 τlo and τhi, a pair of transformations for each cell, whose coordinates are the upper and

lower bounds on the transformations of the cell.

 T0, an initial cell. It is assumed to contain the optimum transformation. This is supplied by

the user, based on a priori knowledge of the nature of the transformation.

 Active cell, if the cell is a candidate to provide the optimum transformation.

 Killed cell, if it cannot provide the optimum solution.

 Cell processing. Select one of the active cells to process. After processing, a cell is either

killed or is split into two disjoint subcells.

 simhi(T), an upper bound of the smallest similarity, associated transformation of which

contained in cell T.

 simlo(T), an lower bound of the smallest similarity, associated transformation of which

contained in cell T.

 simbest, the best similarity encountered so far in the search.

 τbest, the transformation associated with simbest.

 A simhi(T) computing. We may sample any transformation from within the cell. In particular,

this is done by simply taking the midpoint τ of the cell, and then computing simq(τ).

 Uncertain region. Given any cell T T, and given any point a∈A, consider the image of a

under every ∈T. It is easy to compute a bounding rectangle for this set. We call this

bounding rectangle the uncertainty region of a relative to T.

 A simlo(T) computing. To derive our lower bound for T, for each point a∈A, we compute the

distance from the corresponding uncertainty region to its nearest neighbor in B. Observe that

 5

this distance is a lower bound on the distance from  (a) to its nearest neighbor in B, for any 

∈T. We then take the q-th smallest such distance. Call this simlo(T).

 The size of uncertain region, define as its longest side.

 The size of a cell, define as largest size among the associated uncertainty regions for each

point in A.

 Cell queue. The active cells are stored in a priority queue, ordered by cell size.

 Cell splitting. Split cell T into two smaller subcells T1 and T2, by splitting it along the

dimension that contributes most to its uncertainty region size.

2.2 Overview of the Algorithm

Here is an overview of the approximation algorithm. The input consists of the point sets A

and B, the Hausdorff quantile q, the approximation parameters εr, εa and εq, and the initial cell T0.

(1) Build a nearest neighbor data structure for the points of B. Initialize the priority queue to

contain T0. Set simbest=∞. Define the weak quantile q' to be (1 - εq)q. Repeat steps (2)-(5)

until the priority queue is empty or until simbest≤εa.

(2) Remove the largest cell T from the queue. Compute its lower and upper bounds. This involve

the following steps:

(a) Compute the uncertainty regions for every point a∈A with respect to T.

(b) For each uncertainty region, compute its nearest neighbor in B.

(c) Using any fast selection algorithm, compute the q-th quantile among these distances. Call

this simlo(T). If simlo(T) > simbest/(1+εr) or if simlo(T) > simbest - εa, kill this cell and return

to step (2).

(d) Otherwise, sample a transformation  from this cell. Compute the image of each point of

A under , and compute the nearest neighbors of these points with respect to B. Find the

q'th smallest such distance. Call this simhi(T).

(3) If simhi(T) < simbest, update simbest and let τbest be the associated transformation.

(4) Split cell T into two smaller subcells T1 and T2, by splitting it along the dimension that

contributes most to its uncertainty region size. Compute size bounds for T1 and T2.

(5) Enqueue T1 and T2 in the queue of active cells.

The final transformation is τbest and its similarity is simbest.

2.3 Flow Chart of the Algorithm

 6

Q = {T0}, simbest=∞

Q =φ or

simbest≤εa ?

Y

N

Remove the largest cell T from Q

Get simlo(T)

simlo(T) > simbest/(1+εr)

simlo(T) > simbest - εa ?

Get simhi(T)

simlo(T) < simbest ?

simbest = simhi(T)

τbest = τhi

Split T to T1 and T2,

Q = Q + {T1,T2}

Output τbest and simbest

Input A, B, εr, εa, T0

Y

N

Y

N

2.4 Sketch Map of Algorithm

 7

T0(A)
0 simlo hi

opt best

T1(A)
0 simlo hi

opt best

T2(A)
0 simlo hi

opt best

T0

T1 T2

... ...

Parameter Space Uncertain Region Similarity Measure

3. Bound Alignment

The branch-and-bound algorithm has many nice features, but its main drawback is its

relatively high running time. This occurs especially when high accuracy is required and the

optimum similarity is very good. For this reason, we introduce an additional process called bound

alignment to help accelerate the search.

Suppose that the search of branch-and-bound has progressed to a stage where most of the

uncertainty regions associated with the points of A contain at most one point of B. Consider the

points of A that have exactly one point of B in their uncertainty regions. If a cell contains the

optimum transformation, we sample one such point at random and compute the unique

transformation that maps this point to the corresponding point of B for several times, and there is a

good probability that desired optimum transformation is found. On the other hand, if a cell does

not contain the optimum, after taking a number of samples and witnessing repeatedly poor

similarities, we may regard this as evidence that the cell in question does not contain the optimum

and therefore we kill it.

Before giving detailed alignment algorithm, we introduce some definitions and notations.

3.1 Definitions and Notations

 Alignment. The process whereby triples from A are matched against prospective

corresponding triples from B in order to determine a candidate transformation is called

alignment.

 8

 Noise bound η. In noisy environments, suppose that for each inlier a∈A there is a point of B

that lies within some small distance η from its optimum image point, τopt(a). We assume that

an upper bound on η, called the noise bound, is provided to the search algorithm.

 Alignable uncertain region. An uncertainty region is said to be alignable if there is at most

one point of B in the region, or if the region is empty and there is at least one point of B

within distance η of the region.

 Alignable cell. If the current cell has a significant fraction of alignable uncertainty regions,

we say that this cell is eligible for alignment.

 qs, the quantile of uncertainty regions becoming alignable.

 Ns, the number of taking samples.

3.2 Detailed Algorithm

Here are steps used for the bounded alignment algorithm. (These steps are added after step

(2d) in the previous description.) The algorithm is given an expected inlier perturbation η,

sampling quantile qs, and a minimum sample size Ns.

(e) For each a∈A, count the number of points of B that lie within a's uncertainty region. If

this at most one, and the nearest neighbor is within distance η of the uncertainty region,

flag this region as alignable.

(f) If the fraction of alignable uncertainty regions is less than qs, return to step (2). Otherwise,

let A' denote the subset of A such that for each a∈A', there exists at least one point b∈B

that either lies inside or within distance η of a's uncertainty region. Repeat the following

Ns times:

(i) Sample (without replacement) triples of points of A', until a triple that is

geometrically well-distributed is found.

(ii) Compute the transformation that aligns each point in the triple with a random point of

B in its associated uncertainty region. Compute the similarity of this transformation.

(iii) If the similarity of this transformation is better than the current best similarity simbest,

make it the new best. If the similarity obtained for all of the Ns transformations

exceeds the current best by an additive amount of η, kill this cell.

If the similarity obtained for all of the Ns transformations exceeds the current best by an

additive amount of η, kill this cell.

4. Experiments

We have implemented the standard branch-and-bound search and branch-and-bound with

alignment search in Visual C++, running on Intel PIII 700, windows 2000. We ran experiments on

both synthetically generated data sets and real facial images to test the general behavior of the

algorithms.

 9

4.1 Synthetic Experiments

For the synthetic experiments, the following procedures were taken. First, user specifies point

set A and target transformation τ. Then choose a proportion points of A as inliers, for each such

point, τ(a) is computed, and a Gaussian error with mean 0 and standard deviation σ is added. The

point set B weirs consisted of these points and other randomly generated outlier points. After

generating point sets, user must set freedom degree of transformation space including initial cell

T0, error factor εr, εa and εq. If bound alignment is being applied, the user also supplies qs, Ns, η,

etc.

We perform experiments using different point sets and initial parameters, typical cases are shown

in the following table. According to the result, it is obvious that the bound alignment offered a

significant advantage over standard branch-and-bound in CPU time.

 Initial parameters Std B&B B&B with Alignment

|A| |B| τ T0 σ targ

et

qua

ntile

er Transopt simop

t

elp. er Tansopt simopt elp.

1

(20

)

100 120 m11=1.02

m12=0.00

m21=0.00

m22=1.10

t1=0.088

t2=22.28

Lo:

m11=0.80

m12=0.00

m21=0.00

m22=0.80

t1=0.0000

t2=0.0000

Hi:

m11=1.20

m12= 0.0

m21=0.00

m22=1.20

t1=28.000

t2=28.000

2 4 0.8 m11=1.01

25000000

000,

m12=0.0

m21=0.0

m22=1.0

75,

t1=1.750t

2=22.750

3.81

0717

8888

18556ms

2628cell

 m11=1.

02

m12=-0

.0

m21=0.

00

m22=1.

10

t1=0.13

3

t2=22.2

6

0.001

17550

88302

1242m

s

164cell

2 0.8 m11=1.01

m12=0.0

m21=0.0

m22=1.0

878,

t1=0.875

t2=22.75

0.68

1312

6487

8

22742ms

3116cell

 m11=1.

02

m12=-0

.00,

m21=0.

00,

m22=1.

10,

t1=0.13

t2=22.3

0.001

17550

88302

1

1252m

s

164cell

2

100 100 m11=0.80

m12=0.00

m21=0.0

m22=1.18

t1=0.1162

t2=2.129

Lo:

m11=0.80

m12=0.00

m21=0.00

m22=0.80

t1=0.00

2 1 0.7 m11=0.81

m12=0.0

m21=0.0

m22=1.1

81

t1=0.438

0.66

7250

8192

95

26486ms

3374cell

 m11=0.

80

m1=-0.

0

m21=0.

00

0.009

75546

81431

901

1142m

s

150cell

 10

t2=0.00

Hi:

m11=1.20

m12= 0.0

m21=0.00

m22=1.20

t1=28.000

t2=28.0

t2=2.625 m22=1.

18

t1=0.27

t2=1.99

3

50 60 m11=1.02

m12=0.07

m21=0.05

m22=1.10

t1=0.088

t2=22.28

Lo:

m11=0.80

m12=-0.1

m21=-0.1

m22=0.80

t1=0.0

t2=0.00

Hi:

m11=1.20

m12=

0.10,

m21=0.10

m22=1.20

t1=28.0,

t2=28.0

2 2 0.8 m11=1.01

m12=0.0

375

m21=0.0

25

m22=1.0

88

t1=1.75

t2=22.75

1.98

6720

3011

255

154252ms

38060cell

 m11=1.

02

m12=0.

07

m21=0.

05

m22=1.

10

t1=0.10

t2=22.2

0.011

49977

47940

30

814ms

316cell

 Table 1: Initial parameters using to branch-and-bound and bounded alignment algorithms and

their final results. The er denotes relative error of found τ, “elp.” is elapse CPU time for

performing the algorithm.

4.2 Experiment on Facial Images

In the second of experiment we apply the algorithms on finding Facial Feature Points (FFP)

in images. We are given a reference face image, FFP of which is known, and expected to find FFP

in sensed face image. To comparing with standard face, the sensed image may have many

transformations, such translation, rotation, scaling, etc. Extracting feature point set in the reference

image and sensed image, we can use our search algorithm to derive optimum transformation by

minimizing Hausdorff distance, and find FFP in sensed image finally.

Fig. 1 gives a standard FFP map as reference image, fig. 2 and fig. 3 show, respectively, a

face image and its corresponding feature points that served as candidate FFP, fig. 4 displays a final

found facial feature points using optimum transformation computed by the bound alignment

algorithm.

 11

5. Conclusion

We have explored two algorithms for registering images in a robust manner through the use

of feature point pattern matching. Both algorithms allow the user to choose tradeoff between

running times and accurate by specifying initial parameters. The first algorithm is based on

branch-and-bound search. It is simple and safe, but is relatively slow, especially when high

accuracy is desired. The second algorithm, called bounded alignment, is based on combining

branch-and-bound with computing point alignments to accelerate the search. It seems to be much

faster than the branch-and-bound algorithm in many cases, but it may fail with some small

probability.

 12

6. References

[1] L.P.Chew, D.Dor, A.Efrat, K.Kedem. Geometric Pattern Matching in d-Dimensional Space.

[2] M.T.Goodrich, J.S.B.Mitchell, M.W.Orletsky. Approximate Geometric Pattern Matching

under Rigid Motions.

[3] M.Gavrilov, P.Indyk, R.Motwani. Geometric Pattern Matching: A Performance Study.

[4] D.P.Huttenlocher, G.A.Klanderman, W.J.Rucklidge. Comparing Images Using the Hausdorff

Distance.

[5] D.M.Mount, N.S.Netanyahu, J.L.Moigne. Efficient Algorithms for Robust Feature Matching.

1998.

[6] D.P.Huttenlocher, K.Kedem, J.M.Kleinberg. On Dynamic Voronoi Diagrams and the

Minimum Hausdorff Distance for Point Sets Under Euclidean Motion in the Plane.

[7] L.P.Chew, M.T.Goodrich, D.P.Huttenlocher. Geometric Pattern Matching under Euclidean

Motion.

[8] Sunil Arya, David M. Mount. Algorithms for Fast Vector Quantization. Proc. Data

Compression Conference, J. A. Storer and M. Cohn, eds., Snowbird, Utah, 1993, IEEE

Computer Society Press, 381-390.

[9] Sunil Arya, David M. Mount. Approximate Range Searching, Proc. of the 11th Annual ACM

Symp. on Computational Geometry, 1995, 172-181.

[10] S.M. Smith and J.M. Brady. SUSAN - a new approach to low level image processing. Int.

Journal of Computer Vision, 23(1):45-78, May 1997.

[11] http://www3.cs.cornell.edu/dph/docs/hausdorff/hausdorff1.html.

[12] http://www.cs.umd.edu/~mount/ANN.

http://www3.cs.cornell.edu/dph/docs/hausdorff/hausdorff1.html
http://www.cs.umd.edu/~mount/ANN

